
Programmer's Guide

psospa-3

psospa API

PicoScope® 3000E Series

PicoScope 3000E Ser ies psospa API Programmer 's Guide Contents

2Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

Contents
1 Introduction .. 6

1 Software license conditions ... 7

2 Trademarks ... 7

2 Programming overview ... 8

1 System requirements ... 8

2 Driver ... 8

3 Voltage ranges ... 10

4 MSO digital data .. 11

5 Triggering .. 12

6 Sampling modes .. 12

1 Block mode ... 13

2 Rapid block mode .. 15

3 Streaming mode .. 20

4 Retrieving stored data .. 22

7 Timebases .. 22

8 Combining several oscilloscopes ... 23

3 API functions ... 24

1 psospaCheckForUpdate - check if firmware update is available ... 25

2 psospaCloseUnit - close a scope device .. 26

3 psospaEnumerateUnits - get a list of unopened units ... 27

4 psospaGetAdcLimits - get min and max sample values ... 28

5 psospaGetAnalogueOffsetLimits - get analog offset information ... 29

6 psospaGetDeviceResolution – retrieve the device resolution ... 30

7 psospaGetMaximumAvailableMemory - find max memory at a given resolution ... 31

8 psospaGetMinimumTimebaseStateless - find fastest available timebase .. 32

9 psospaGetNoOfCaptures - query how many captures made .. 33

10 psospaGetNoOfProcessedCaptures - query how many captures processed .. 34

11 psospaGetScalingValues - get scaling factors used to adjust the gain and offset of oscilloscope
data .. 35

1 PICO_SCALING_FACTORS_FOR_RANGE_TYPES_VALUES structure ... 35

12 psospaGetStreamingLatestValues - read streaming data ... 37

1 PICO_STREAMING_DATA_INFO ... 38

2 PICO_STREAMING_DATA_TRIGGER_INFO ... 39

13 psospaGetTimebase - get available timebases ... 40

14 psospaGetTriggerInfo - get trigger timing information .. 41

1 PICO_TRIGGER_INFO - structure .. 42

2 Time stamping ... 43

15 psospaGetTriggerTimeOffset - get timing corrections ... 44

16 psospaGetUnitInfo - get information about device .. 45

17 psospaGetValues - get data after a capture has completed ... 47

PicoScope 3000E Ser ies psospa API Programmer 's Guide Contents

3Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

1 Downsampling modes ... 48

18 psospaGetValuesAsync - read data without blocking ... 50

19 psospaGetValuesBulk - read multiple segments ... 51

20 psospaGetValuesBulkAsync - read multiple segments without blocking .. 52

21 psospaGetValuesOverlapped - make a deferred request for data before running the scope 53

1 Using GetValuesOverlapped() .. 54

22 psospaGetValuesTriggerTimeOffsetBulk - get trigger time offsets for multiple segments 55

23 psospaGetVariantDetails - get specification details in JSON format ... 56

1 PICO_TEXT_FORMAT textFormat ... 56

24 psospaIsReady - get status of block capture .. 58

25 psospaMemorySegments - set number of memory segments .. 59

26 psospaMemorySegmentsBySamples - set size of memory segments .. 60

27 psospaNearestSampleIntervalStateless - get nearest sampling interval .. 61

28 psospaNoOfStreamingValues - get number of captured samples .. 62

29 psospaOpenUnit - open a scope device .. 63

1 PICO_USB_POWER_DETAILS .. 64

2 PICO_USB_POWER_DELIVERY .. 64

30 psospaPingUnit - check if device is still connected .. 66

31 psospaQueryMaxSegmentsBySamples - get number of segments .. 67

32 psospaQueryOutputEdgeDetect – check if output edge detection is enabled ... 68

33 psospaResetChannelsAndReportAllChannelsOvervoltageTripStatus - reset 50 input protection 69

34 psospaReportAllChannelsOvervoltageTripStatus- check if 50 input protection has tripped 70

1 PICO_CHANNEL_OVERVOLTAGE_TRIPPED structure .. 70

35 psospaRunBlock - start block mode capture ... 71

36 psospaRunStreaming - start streaming mode capture ... 73

37 psospaSetAuxIoMode - configure the AUX IO connector ... 75

38 psospaSetChannelOff - disable one channel .. 76

39 psospaSetChannelOn - enable and set options for one channel .. 77

40 psospaSetDataBuffer - provide location of data buffer .. 79

41 psospaSetDataBuffers - provide locations of both data buffers ... 81

42 psospaSetDeviceResolution – set the hardware resolution ... 82

1 PICO_DEVICE_RESOLUTION enumerated type ... 82

43 psospaSetDigitalPortOff – switch off a digital port .. 83

44 psospaSetDigitalPortOn – set up and enable a digital port ... 84

45 psospaSetLedBrightness - set brightness of LEDs ... 85

46 psospaSetLedColours - set the colors of specified LEDs .. 86

1 PICO_LED_COLOUR_PROPERTIES structure .. 86

2 PICO_LED_SELECT enumerated type .. 87

47 psospaSetLedStates - set the states of specified LEDs ... 88

1 PICO_LED_STATE_PROPERTIES structure .. 89

48 psospaSetNoOfCaptures - configure rapid block mode ... 90

49 psospaSetOutputEdgeDetect – change triggering behavior ... 91

50 psospaSetPulseWidthDigitalPortProperties – set the digital port pulse-width trigger settings 92

PicoScope 3000E Ser ies psospa API Programmer 's Guide Contents

4Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

51 psospaSetPulseWidthQualifierConditions - specify how to combine channels .. 93

52 psospaSetPulseWidthQualifierDirections - specify threshold directions .. 94

53 psospaSetPulseWidthQualifierProperties - specify threshold logic .. 95

54 psospaSetSimpleTrigger - set up basic triggering ... 96

55 psospaSetTriggerChannelConditions - set triggering logic .. 97

1 PICO_CONDITION structure ... 98

56 psospaSetTriggerChannelDirections - set trigger directions ... 99

1 PICO_DIRECTION structure ... 100

57 psospaSetTriggerChannelProperties - set up triggering ... 101

1 TRIGGER_CHANNEL_PROPERTIES structure ... 102

58 psospaSetTriggerDelay - set post-trigger delay ... 103

59 psospaSetTriggerDigitalPortProperties - set digital port trigger directions ... 104

1 PICO_DIGITAL_CHANNEL_DIRECTIONS structure ... 105

60 psospaSetTriggerHoldoffCounterBySamples - set the trigger holdoff time in sample intervals 106

61 psospaSigGenApply - set the signal generator running .. 107

62 psospaSigGenFrequency - set output frequency ... 108

63 psospaSigGenFrequencyLimits - get signal generator limit values ... 109

64 psospaSigGenFrequencySweep - set signal generator to frequency sweep mode 110

65 psospaSigGenLimits - get signal generator parameters .. 111

66 psospaSigGenPause - stop the signal generator ... 112

67 psospaSigGenPhase - set signal generator using delta-phase value instead of a frequency 113

1 Calculating deltaPhase .. 113

68 psospaSigGenPhaseSweep - set signal generator to sweep using delta-phase values instead
of frequency values ... 115

69 psospaSigGenRange - set signal generator output voltages .. 116

70 psospaSigGenRestart - continue after pause ... 117

71 psospaSigGenSoftwareTriggerControl - set software triggering ... 118

72 psospaSigGenTrigger - choose the trigger event ... 119

73 psospaSigGenWaveform - choose signal generator waveform ... 120

74 psospaSigGenWaveformDutyCycle - set duty cycle ... 121

75 psospaStartFirmwareUpdate - update the device firmware .. 122

76 psospaStop - stop sampling .. 123

77 psospaStopUsingGetValuesOverlapped - complements psospaGetValuesOverlapped 124

78 psospaTriggerWithinPreTriggerSamples - switch feature on or off ... 125

4 Callbacks .. 126

1 psospaBlockReady - indicate when block-mode data ready ... 126

2 psospaDataReady - indicate when post-collection data is ready ... 127

3 PicoUpdateFirmwareProgress - get status of firmware update ... 128

5 Reference ... 129

1 Numeric data types .. 129

2 Enumerated types and constants ... 129

3 Driver status codes .. 130

PicoScope 3000E Ser ies psospa API Programmer 's Guide Contents

5Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

4 Glossary .. 130

Introduction

6Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

1 Introduction
The PicoScope 3000E Series of oscilloscopes from Pico
Technology is a range of compact high-performance units
designed to replace traditional benchtop oscilloscopes.

This manual explains how to use the psospa API
(application programming interface) for the
PicoScope 3000E Series oscilloscopes.

For more information on the hardware, see the PicoScope
3000E Series Data Sheet.

psospa-3 programmer's guide (Available online and as a PDF)

https://www.picotech.com/download/datasheets/picoscope-3000e-series-data-sheet.pdf
https://www.picotech.com/download/datasheets/picoscope-3000e-series-data-sheet.pdf
https://www.picotech.com/helpfiles/psospa-api/index.html
https://www.picotech.com/download/manuals/picoscope-3000e-series-psospa-programmers-guide.pdf

Introduction

7Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

1.1 Software license conditions
The material contained in this release is licensed, not sold. Pico Technology Limited grants a license to the
person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of these
conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico Technology products or with data collected using
Pico Technology products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all material (software,
documents, etc.) contained in this software development kit (SDK) except the example programs. You may copy
and distribute the SDK without restriction, as long as you do not remove any Pico Technology copyright
statements. The example programs in the SDK may be modified, copied and distributed for the purpose of
developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever caused,
related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its equipment
or software is suitable for a given application. It is your responsibility, therefore, to ensure that the product is
suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running other software
products. For this reason, one of the conditions of the license is that it excludes use in mission-critical
applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are responsible for
virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our technical support staff,
who will try to fix the problem within a reasonable time. If you are still dissatisfied, please return the product and
software to your supplier within 14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the right to
charge for updates or replacements sent out on physical media.

1.2 Trademarks
Pico Technology and PicoScope are trademarks of Pico Technology Limited, registered in the United Kingdom
and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or trademarks of Microsoft
Corporation in the USA and other countries. Linux is the registered trademark of Linus Torvalds, registered in the
U.S. and other countries. macOS is a trademark of Apple Inc., registered in the U.S. and other countries. LabVIEW
is a registered trademark of National Instruments Corporation. MATLAB is a registered trademark of The
MathWorks, Inc.

Programming overview

8Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2 Programming overview
The psospa library allows you to program a PicoScope 3000E Series oscilloscope using standard C function
calls.

A typical program for capturing data consists of the following steps:
· Open the scope unit.
· Set up the input channels with the required voltage ranges and coupling types.
· Set up triggering.
· Start capturing data. (See Sampling modes, where programming is discussed in more detail.)
· Wait until the scope unit is ready.
· Stop capturing data.
· Copy data to a buffer.
· Close the scope unit.

Numerous sample programs are available on the picotech channel of GitHub. These demonstrate how to use the
functions of the driver software in each of the modes available.

2.1 System requirements
To ensure that your PicoScope 3000E Series PC Oscilloscope operates correctly, you must have a computer with
at least the minimum system requirements to run one of the supported operating systems, as shown in the
following table. The performance of the oscilloscope will be better with a more powerful PC, and will benefit from
a multi-core processor.

Item Specification

Operating system Microsoft Windows 10 or 11, 64-bit only
Linux: Ubuntu or openSUSE, 64-bit only
macOS, 64-bit only

Processor, memory, free disk space As required by the operating system.

Ports USB 2.0 or 3.0 port

The software development kit or driver libraries for all supported operating systems can be found at
picotech.com/downloads

The psospa driver offers three different methods of recording data, all of which support USB 2.0 and USB 3.0. A
USB 3.0 port will offer the best performance especially in streaming mode or when retrieving large amounts of
data from the oscilloscope.

2.2 Driver
Your application will communicate with a PicoScope library called psospa. The driver exports the function
definitions in standard C format, but this does not limit you to programming in C. You can use the API with any
programming language that supports standard C calls.

The driver names for each supported operating system are listed in the following table:

Windows: psospa.dll

macOS: libpsospa.dylib

Linux: libpsospa.so

https://github.com/picotech/
https://www.picotech.com/downloads

Programming overview

9Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

The API depends on OS-specific low-level drivers. These drivers are installed by the SDK and configured when
you plug the oscilloscope into a USB port for the first time. Your application does not call these drivers directly.

If you want to deploy your application which uses the psospa driver on other computer systems, you'll need to

include these dependencies in your package / installer or, in the case of Linux systems, list psospa as a
dependency of your package and ensure the Pico package repository is available on the target system.

Programming overview

10Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.3 Voltage ranges
You can set a device input channel to any available voltage range with the psospaSetChannelOn() function.

The voltage range is chosen by specifying its minimum and maximum range and units, which must correspond to
one of the available voltage ranges specified in the data sheet for your oscilloscope.

By default, each sample is scaled to 16 bits. The minimum and maximum values returned to your application

depend on the sampling resolution in use and can be queried by psospaGetAdcLimits(). This function
replies with the following values:

Resolution 8 bits 10 bits

Voltage Value returned

maximum +32 512 (0x7F00) +32 704 (0x7FC0)

zero 0 0

minimum –32 512 (0x8100) –32 704 (0x8040)

Example at 8-bit resolution

1. Call psospaSetChannelOn() with arguments:

rangeMin = –1 000 000 000

rangeMax = +1 000 000 000

rangeType = PICO_PROBE_NONE_NV

to select the ±1 V range.

2. Apply a sine wave input of 500 mV amplitude to the oscilloscope.

3. Capture some data using the desired sampling mode.

4. The data will be encoded as shown below:

Digital inputs:

See psospaSetDigitalPortOn() and psospaSetDigitalPortOff()

Programming overview

11Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.4 MSO digital data
Applicability

A PicoScope 3000E Series MSO model has two 8-bit digital ports—PORT0 and PORT1—making a total of 16 digital
channels.

Use the psospaSetDataBuffer() and psospaSetDataBuffers() functions to set up buffers into which
the driver will write data from each port individually. For compatibility with the analog channels, each buffer is an
array of 16-bit words. The 8-bit port data occupies the lower 8 bits of the word. The upper 8 bits of the word are
undefined.

PORT0 buffer PORT1 buffer
Sample0 [XXXXXXXX,D7...D0]0 [XXXXXXXX,D15...D8]0
...
Samplen–1 [XXXXXXXX,D7...D0]n–1 [XXXXXXXX,D15...D8]n–1

Retrieving stored digital data
The following C code snippet shows how to combine data from the two 8-bit ports into a single 16-bit word, and
then how to extract individual bits from the 16-bit word.

// Mask Port 1 values to get lower 8 bits

portValue = 0x00ff & sampleFromPort1Buffer;

// Shift by 8 bits to place in upper 8 bits of 16-bit word

portValue <<= 8;

// Mask Port 0 values to get lower 8 bits,

// then OR with shifted Port 1 bits to get 16-bit word

portValue |= 0x00ff & sampleFromPort0Buffer;

for (bit = 0; bit < 16; bit++)

{

 // Shift value 32768 (binary 1000 0000 0000 0000).

 // AND with value to get 1 or 0 for channel.

 // Order will be D15 to D0.

 bitValue = (0x8000 >> bit) & portValue? 1 : 0;

}

Programming overview

12Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.5 Triggering
PicoScope 3000E Series PC Oscilloscopes can either start collecting data immediately or be programmed to wait
for a trigger event to occur. In both cases you need to use the trigger functions:

· psospaSetTriggerChannelConditions()

· psospaSetTriggerChannelDirections()

· psospaSetTriggerChannelProperties()

· psospaSetTriggerDigitalPortProperties()

These can be run collectively by calling psospaSetSimpleTrigger(), or singly.

A trigger event can occur when one of the input channels crosses a threshold voltage on either a rising or a falling
edge. It is also possible to combine up to four inputs using the logic trigger function.

The driver supports triggering methods, including:

· Simple edge
· Advanced edge
· Windowing
· Pulse width
· Logic
· Delay
· Drop-out
· Runt

The pulse width, delay and drop-out triggering methods additionally require the use of the pulse width qualifier
functions:

· psospaSetPulseWidthQualifierProperties()

· psospaSetPulseWidthQualifierConditions()

· psospaSetPulseWidthQualifierDirections()

· psospaSetPulseWidthDigitalPortProperties()

Additional trigger parameters can be set using the functions:

· psospaSetTriggerDelay()

· psospaSetTriggerHoldoffCounterBySamples()

2.6 Sampling modes
PicoScope 3000E Series oscilloscopes can run in various sampling modes.

· Block mode. In this mode, the scope stores data in its buffer memory and then transfers it to the PC. When
the data has been collected it is possible to examine the data, with an optional downsampling factor. The data
is lost when a new run is started in the same segment, the settings are changed or the scope is powered
down.

The driver can return data asynchronously using a callback, which is a call to one of the functions in your own
application. When you request data from the scope, you pass to the driver a pointer to your callback function.
When the driver has written the data to your buffer, it makes a callback (calls your function) to signal that the
data is ready. The callback function then signals to the application that the data is available.

Because the callback is called asynchronously from the rest of your application, in a separate thread, you
must ensure that it does not corrupt any global variables while it runs.

If you do not wish to use a callback, you can poll the driver instead.

Programming overview

13Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

· Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at a
time with a minimum of delay between captures. You can use downsampling in this mode if you wish.

· Streaming mode. This mode enables long periods of data collection. In raw mode (no downsampling) it
provides fast data transfer of unlimited amounts of data at up to 312 MB/s (3.2 ns per sample) in 8-bit mode
with USB 3.0.

If downsampling is enabled, raw data can be sampled at up to 1 GS/s for a single channel in 8-bit mode.
Downsampled data is returned while capturing is in progress, at up to 312 MB/s. The raw data can then be
retrieved after the capture is complete. The number of raw samples is limited by the memory available on the
device, the selected resolution and the number of channels enabled.

Triggering is supported in this mode.

Note: The oversampling feature of older PicoScope oscilloscopes has been replaced by
PICO_RATIO_MODE_AVERAGE.

2.6.1 Block mode

In block mode, the computer prompts a PicoScope 3000E series oscilloscope to collect a block of data into its
internal memory. When the oscilloscope has collected the whole block, it signals that it is ready and then
transfers the whole block to the computer's memory through the USB port.

Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The
memory buffer is shared between the enabled channels, so if two channels are enabled, each receives half
the memory. These features are handled transparently by the driver. The block size also depends on the

number of memory segments in use (see psospaMemorySegments()) and the sampling resolution.

Sampling rate. A PicoScope 3000E Series oscilloscope can sample at a number of different rates according
to the selected timebase and the combination of channels that are enabled. See the PicoScope 3000E Series
Data Sheet for the specifications that apply to your scope model.

Setup time. The driver normally performs a number of setup operations, which can take tens of milliseconds,
before collecting each block of data. If you need to collect data with the minimum time interval between

blocks, use rapid block mode and avoid calling setup functions between calls to psospaRunBlock(),

psospaStop() and psospaGetValues().

Downsampling. When the data has been collected, you can set an optional downsampling factor and examine
the data. Downsampling is a process that reduces the amount of data by combining adjacent samples. It is
useful for zooming in and out of the data without having to repeatedly transfer the entire contents of the
scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into segments so that you can capture

several waveforms in succession. Configure this using psospaMemorySegments() or

psospaMemorySegmentsBySamples().

Data retention. The data is lost when a new run is started in the same segment, the settings are changed, or
the scope is powered down.

See Using block mode for programming details.

https://www.picotech.com/download/datasheets/picoscope-3000e-series-data-sheet.pdf
https://www.picotech.com/download/datasheets/picoscope-3000e-series-data-sheet.pdf

Programming overview

14Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.6.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a single memory segment:

1. Open the oscilloscope using psospaOpenUnit().

2. Select channel ranges and AC/DC/50 coupling using psospaSetChannelOn() and

psospaSetChannelOff().

3. Use psospaNearestSampleIntervalStateless() to get the closest valid sample interval to the
requested.

4. Use the trigger setup functions psospaSetTriggerChannelConditions(),

psospaSetTriggerChannelDirections(), psospaSetTriggerChannelProperties() or

psospaSetSimpleTrigger() to set up the trigger if required.

5. Start the oscilloscope running using psospaRunBlock().

6. Wait until the oscilloscope is ready using the psospaBlockReady() callback (or poll using

psospaIsReady()).

7. Use psospaSetDataBuffer() to tell the driver where your memory buffer is. For greater efficiency with
multiple captures, you can do this outside the loop after step 4.

8. Transfer the block of data from the oscilloscope using psospaGetValues().
9. Display or process the data.
10. Repeat steps 5 to 9.

11. Stop the oscilloscope using psospaStop().
12. Request new views of stored data using different downsampling parameters: see Retrieving stored data.

13. Close the device using psospaCloseUnit().

2.6.1.2 Asynchronous calls in block mode

psospaGetValues() may take a long time to complete if a large amount of data is being collected. To avoid

blocking the calling thread, it is possible to call psospaGetValuesAsync() instead. This immediately returns

control to the calling thread, which then has the option of waiting for the data or calling psospaStop() to abort
the operation.

Programming overview

15Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.6.2 Rapid block mode

In normal block mode, the PicoScope 3000E Series scopes collect one waveform at a time. You start the device
running, wait until all samples are collected by the device, and then download the data to the PC or start another
run. There is a time overhead of tens of milliseconds associated with starting a run, causing a gap between
waveforms. When you collect data from the device, there is another minimum time overhead which is most
noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the minimum time between
waveforms. It reduces the gap from milliseconds to less than 1 microsecond.

See Using rapid block mode for details.

2.6.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you need to set up two buffers for
each channel, to receive the minimum and maximum values.

Without aggregation

1. Open the oscilloscope using psospaOpenUnit().

2. Select channel ranges and AC/DC coupling using psospaSetChannelOn() and

psospaSetChannelOff().

3. Use psospaNearestSampleIntervalStateless(), to find a valid sampling interval to use.

4. Use the trigger setup functions psospaSetTriggerChannelConditions(),

psospaSetTriggerChannelDirections(), psospaSetTriggerChannelProperties()

and psospaSetSimpleTrigger() to set up the trigger if required.

5. Start the oscilloscope running using psospaRunBlock().

6. Wait until the oscilloscope is ready using the psospaBlockReady() callback.

7. Use psospaSetDataBuffer() to tell the driver where your memory buffers are. Call the function once
for each channel/segment combination for which you require data. For greater efficiency with multiple
captures, you could do this outside the loop after step 4.

8. Transfer the blocks of data from the oscilloscope using psospaGetValuesBulk().
9. Display or process the data.
10. Repeat steps 5 to 9 if necessary.

11. Stop the oscilloscope using psospaStop().

12. Close the device using psospaCloseUnit().

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 6 above and then proceed as follows:

7a. Call psospaSetDataBuffers() to set up one pair of buffers for every waveform segment required.

8a. Call psospaGetValuesBulk() for each pair of buffers.

Continue from step 9 above.

2.6.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device
· Channels
· Trigger
· Number of memory segments (this should be equal or more than the number of captures required)

Programming overview

16Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

// set the number of waveforms to MAX_WAVEFORMS

psospaSetNoOfCaptures(handle, MAX_WAVEFORMS);

psospaRunBlock

(

handle,

0, // noOfPreTriggerSamples

10000, // noOfPostTriggerSamples

400, // sample interval in picoseconds

&timeIndisposedMs,

0, // first segment index to capture

lpReady,

&pParameter

);

Comment: these variables have been set as an example and can be any valid value. pParameter will be set true

by your callback function lpReady.

while (!pParameter) Sleep (0);

PICO_ACTION action = PICO_CLEAR_ALL | PICO_ADD;

int32_t first_segment_to_read = 10;

for (int32_t i = 0; i < 10; i++)

{

for (int32_t c = PICO_CHANNEL_A; c <= PICO_CHANNEL_D; c++)

{

psospaSetDataBuffer

(

handle,

c,

buffer[c][i],

MAX_SAMPLES,

PICO_INT16_T,

first_segment_to_read + i,

PICO_RATIO_MODE_RAW,

action

);

action = PICO_ADD;

}

}

Comments: buffer has been created as a two-dimensional array of pointers to int16_t, which will contain 1000

samples as defined by MAX_SAMPLES. Only 10 buffers are set, but it is possible to set up to the number of
captures you have requested.

psospaGetValuesBulk

(

handle,

0, // startIndex

&noOfSamples, // set to MAX_SAMPLES on entering the function

10, // fromSegmentIndex

19, // toSegmentIndex

1, // downsampling ratio

Programming overview

17Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

PICO_RATIO_MODE_RAW, // downsampling ratio mode

overflow // indices 0 to 9 will be populated (index always

starts from 0)

)

Comments: the number of samples could be up to noOfPreTriggerSamples +

noOfPostTriggerSamples, the values set in psospaRunBlock(). The samples are returned starting from
the sample index. This function does not support aggregation. The above segments start at 10 and finish at 19

inclusive. It is possible for fromSegmentIndex to wrap around to toSegmentIndex, for example by setting

fromSegmentIndex to 98 and toSegmentIndex to 7.

Programming overview

18Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.6.2.3 Rapid block mode example 2: using aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device
· Channels
· Trigger
· Number of memory segments (this should be equal or more than the number of captures required)

// set the number of waveforms to MAX_WAVEFORMS

psospaSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;

psospaRunBlock

(

handle,

0, // noOfPreTriggerSamples,

1000000, // noOfPostTriggerSamples,

400, // sample interval in picoseconds,

&timeIndisposedMs,

0, // first segment index to be captured,

lpReady,

&pParameter

);
Comments: the set-up for running the device is exactly the same whether or not aggregation will be used when
you retrieve the samples.

PICO_ACTION action = PICO_CLEAR_ALL | PICO_ADD;

for (int32_t c = PICO_CHANNEL_A; c <= PICO_CHANNEL_D; c++)

{

psospaSetDataBuffers

(

handle,

c,

bufferMax[c],

bufferMin[c]

MAX_SAMPLES,

PICO_INT16_T,

0,

PICO_RATIO_MODE_AGGREGATE,

action

);

action = PICO_ADD;

}
Comments: since only one waveform will be retrieved at a time, you only need to set up one pair of buffers; one
for the maximum samples and one for the minimum samples. Again, the buffer sizes are 1000 samples.

for (int32_t segment = 10; segment < 20; segment++)

{

psospaGetValues

Programming overview

19Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

(

handle,

0,

&noOfSamples, // set to MAX_SAMPLES on entering

1000,

&downSampleRatioMode, // set to RATIO_MODE_AGGREGATE

index,

overflow

);

}
Comments: each waveform is retrieved one at a time from the driver with an aggregation of 1000. Alternatively, it

would be equally valid to use psospaGetValuesBulk() to retrieve multiple waveforms at once as shown in
the previous example.

Programming overview

20Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.6.3 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when using block mode. This
makes it suitable for high-speed data acquisition, allowing you to capture long data sets limited only by the
computer's memory. (At the highest sampling rates, the size of the device's capture buffer may limit the capture
size.)

The device can return either raw or downsampled data to your application while streaming is in progress. When
downsampled data is returned, the raw samples remain stored on the device and can be read after streaming is
completed.

· Downsampling. The driver can return either raw or downsampled data. You should set up the number of
buffers needed to accept the requested data. Aggregation requires two buffers, one for the minimum values
and one for the maximum values. Other downsampling modes require only a single buffer.

See Using streaming mode for programming details.

Programming overview

21Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.6.3.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using a single memory segment:

1. Open the oscilloscope using psospaOpenUnit().

2. Select channels, ranges and AC/DC/50 coupling using psospaSetChannelOn() and

psospaSetChannelOff().

3. Use psospaNearestSampleIntervalStateless() to get the closest valid sample interval to the
requested.

4. Use the trigger setup functions psospaSetTriggerChannelConditions(),

psospaSetTriggerChannelDirections(), psospaSetTriggerChannelProperties() or

psospaSetSimpleTrigger() to set up the trigger if required.

5. Call psospaSetDataBuffer() to tell the driver where your data buffer is.

6. Set up aggregation and start the oscilloscope running using psospaRunStreaming().

7. Call psospaGetStreamingLatestValues() to get data. If the function runs out of buffer space, call

psospaSetDataBuffer() again to provide more buffers. You can provide the same buffer repeatedly,
if you have finished processing the data already in the buffer before resubmitting it for further samples.

8. Process data returned to your application's function. This example is using autoStop, so after the driver
has received all the data points requested by the application, it stops the device streaming.

9. Call psospaStop(), even if autoStop is enabled.
10. Request new views of stored data using different downsampling parameters: see Retrieving stored data.

11. Close the device using psospaCloseUnit().

Programming overview

22Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.6.4 Retrieving stored data

You can retrieve data from the psospa driver with a different downsampling factor when psospaRunBlock()

or psospaRunStreaming() has already been called and has successfully captured all the data. Use

psospaGetValuesAsync().

2.7 Timebases
The available sample intervals for the PicoScope 3000E oscilloscope are multiples of the minimum sampling
interval for the chosen resolution and number of enabled channels. Not all possible sample intervals are

supported, therefore you can use psospaNearestSampleIntervalStateless to determine the nearest
valid sample interval to your requirements.

In block mode, the timebase argument passed to psospaRunBlock directly represents the required sample

interval in picoseconds. In streaming mode, the sample interval is specified using the sampleInterval and

sampleIntervalTimeUnits arguments to psospaRunStreaming.

Applicability Calls to psospaGetTimebase()

Notes
1. The maximum possible sampling rate depends on the selected resolution, the number of enabled channels

and on the sampling mode. Please refer to the data sheet for details.
2. In streaming mode, the speed of the USB port may affect the rate of data transfer.

Programming overview

23Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

2.8 Combining several oscilloscopes
It is possible to collect data using up to 64 PicoScope 3000E Series oscilloscopes at the same time, depending
on the capabilities of the PC. Each oscilloscope must be connected to a separate USB port. The

psospaOpenUnit() function returns a handle to an oscilloscope. All the other functions require this handle for
oscilloscope identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK psospaBlockReady(...)

// define callback function specific to application

handle1 = psospaOpenUnit()

handle2 = psospaOpenUnit()

psospaSetChannelOn(handle1)

// set up unit 1

psospaRunBlock(handle1)

psospaSetChannelOn(handle2)

// set up unit 2

psospaRunBlock(handle2)

// data will be stored in buffers

// and application will be notified using callback

ready = FALSE

while not ready

 ready = handle1_ready

 ready &= handle2_ready

Note: a trigger may be fed into the Aux Trig (AUX I/O) input to provide some degree of synchronization between
multiple oscilloscopes.

API functions

24Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3 API functions
The PicoScope 3000E Series API exports the following functions for you to use in your own applications. All

functions are C functions using the standard calling convention (__stdcall). They are all exported with both
decorated and undecorated names.

API functions

25Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.1 psospaCheckForUpdate - check if firmware update
is available

PICO_STATUS psospaCheckForUpdate

(

int16_t handle,

PICO_FIRMWARE_INFO * firmwareInfos,

int16_t * nFirmwareInfos,

uint16_t * updatesRequired

)

This function checks whether a firmware update for the device is available. Firmware updates, when required, are
distributed as part of the driver library and this function checks whether the currently-running driver contains more
up-to-date firmware than that on the connected device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

firmwareInfos, a pointer to a buffer of PICO_FIRMWARE_INFO structs which, on exit, will be populated with
detailed information about the available updates. Information about firmware which is already up to date will also
be provided. You may pass NULL if you do not require the detailed information.

nFirmwareInfos, on entry, a pointer to a value which is the length of the firmwareInfos buffer, if

firmwareInfos is not NULL. On exit, the number of populated entries in firmwareInfos (or the available

number of PICO_FIRMWARE_INFOs if firmwareInfos is NULL). May be NULL if the caller does not need

detailed firmware information (in which case firmwareInfos must also be NULL).

updatesRequired, on entry, a pointer to a flag which will be set by the function to indicate if updates are
required. On exit, 1 if updates are required and 0 otherwise.

Returns

PICO_OK

API functions

26Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.2 psospaCloseUnit - close a scope device
PICO_STATUS psospaCloseUnit

(

int16_t handle

)

This function shuts down a PicoScope 3000E Series oscilloscope. Closing the unit correctly after use returns it to
a low-power state, turning off the fan and LED indicators, and leaves it in a known state ready to be re-opened
when required.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

Returns

PICO_OK

API functions

27Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.3 psospaEnumerateUnits - get a list of unopened units
PICO_STATUS psospaEnumerateUnits

(

int16_t * count,

int8_t * serials,

int16_t * serialLth

)

This function counts the number of PicoScope units, supported by the psospa driver, connected to the computer
and returns a list of serial numbers and other optional information as a string. Note that this function can only
detect devices that are not yet being controlled by an application. To query opened devices, use

psospaGetUnitInfo().

Applicability

All modes

Arguments

count, on exit, the number of PicoScope units found.

serials, if an empty string on entry, serials is populated on exit with a list of serial numbers separated by
commas and terminated by a final null. Example:

AQ005/139,VDR61/356,ZOR14/107

On entry, serials can optionally contain the following parameter(s) to request information:

-v : model number

-c : calibration date

-h : hardware version

-u : USB version

-f : firmware version
Example (any separator character can be used):

-v:-c:-h:-u:-f
On exit, with all the above parameters specified, each serial number has the requested information appended in
the following format:

10001/0001[3418E,01Jun24,769,2.0,1.7.16.0]

serials can be NULL if device information or serial numbers are not required.

serialLth, on entry, the length of the int8_t buffer pointed to by serials; on exit, the length of the string

written to serials.

Returns

PICO_OK

PICO_BUSY

PICO_NULL_PARAMETER

PICO_FW_FAIL

PICO_CONFIG_FAIL

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

API functions

28Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.4 psospaGetAdcLimits - get min and max sample
values

PICO_STATUS psospaGetAdcLimits

(

int16_t handle,

PICO_DEVICE_RESOLUTION resolution,

int16_t * minValue,

int16_t * maxValue

)

This function gets the maximum and minimum sample values that the ADC can produce at a given resolution.
These values can be used to scale the returned sample values from the driver into voltages, using the full-scale
voltage of the current input range.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

resolution, the vertical resolution about which you require information.

minValue, the minimum sample value.

maxValue, the maximum sample value.

Returns

PICO_OK

PICO_NULL_PARAMETER, if both maxValue and minValue are NULL.

API functions

29Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.5 psospaGetAnalogueOffsetLimits - get analog offset
information

PICO_STATUS psospaGetAnalogueOffsetLimits

(

int16_t handle,

int64_t rangeMin,

int64_t rangeMax,

PICO_PROBE_RANGE_INFO rangeType,

PICO_COUPLING coupling,

double * maximumVoltage,

double * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a specific voltage range.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

rangeMin,rangeMax,rangeType, the voltage range for which minimum and maximum voltages are

required. See psospaSetChannelOn().

coupling, the type of AC/DC/50 coupling used

maximumVoltage, on output, the maximum (most positive) analog offset voltage allowed for the range. Set to

NULL if not required.

minimumVoltage, on output, the minimum (most negative) analog offset voltage allowed for the range. Set to

NULL if not required.

Returns

PICO_OK

PICO_INVALID_VOLTAGE_RANGE

PICO_NULL_PARAMETER, if both maximumVoltage and minimumVoltage are NULL.

PICO_INVALID_COUPLING

API functions

30Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.6 psospaGetDeviceResolution – retrieve the device
resolution

PICO_STATUS psospaGetDeviceResolution

(

int16_t handle,

PICO_DEVICE_RESOLUTION * resolution

)

This function retrieves the currently selected vertical resolution of the oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

resolution, on exit, the resolution of the device.

Returns

PICO_OK

PICO_NULL_PARAMETER

API functions

31Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.7 psospaGetMaximumAvailableMemory - find max
memory at a given resolution

PICO_STATUS psospaGetMaximumAvailableMemory

(

int16_t handle,

uint64_t * nMaxSamples,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the maximum number of samples that can be stored at a given hardware resolution.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

nMaxSamples, on exit, the number of samples.

resolution, the resolution as one of the PICO_DEVICE_RESOLUTION enum values.

Returns

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

32Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.8 psospaGetMinimumTimebaseStateless - find fastest
available timebase

PICO_STATUS psospaGetMinimumTimebaseStateless

(

int16_t handle,

PICO_CHANNEL_FLAGS enabledChannelFlags,

uint32_t * timebase,

double * timeInterval,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the shortest timebase that could be selected with a proposed configuration of the
oscilloscope. It does not set the oscilloscope to the proposed configuration.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

enabledChannelFlags, a bit field indicating which channels are enabled in the proposed configuration.
Channel A is bit 0 and so on.

timebase, on exit, the number of the shortest timebase possible with the proposed configuration, in
picoseconds.

timeInterval, on exit, the sample period in seconds corresponding to timebase.

resolution, the vertical resolution in the proposed configuration.

Returns

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

PICO_NO_CHANNELS_OR_PORTS_ENABLED

PICO_INVALID_DIGITAL_PORT

API functions

33Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.9 psospaGetNoOfCaptures - query how many captures
made

PICO_STATUS psospaGetNoOfCaptures

(

int16_t handle,

uint64_t * nCaptures

)

This function returns the number of captures collected in one run of rapid block mode. You can call this function
during device capture, after collection has completed or after interrupting waveform collection by calling

psospaStop().

The returned value (nCaptures) can then be used to iterate through the number of segments using

psospaGetValues(), or in a single call to psospaGetValuesBulk() where it is used to calculate the

toSegmentIndex parameter.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

nCaptures, on output, the number of available captures that have been collected from calling

psospaRunBlock().

Returns

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

34Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.10 psospaGetNoOfProcessedCaptures - query how
many captures processed

PICO_STATUS psospaGetNoOfProcessedCaptures

(

int16_t handle,

uint64_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid block mode. It enables
your application to start processing captured data while the driver is still transferring later captures from the
device to the computer.

The function returns the number of captures the driver has processed since you called psospaRunBlock(). It

is for use in rapid block mode, alongside the psospaGetValuesOverlapped() function, when the driver is

set to transfer data from the device automatically as soon as the psospaRunBlock() function is called. You

can call psospaGetNoOfProcessedCaptures() during device capture, after collection has completed or

after interrupting waveform collection by calling psospaStop().

The returned value (nProcessedCaptures) can then be used to iterate through the number of segments using

psospaGetValues(), or in a single call to psospaGetValuesBulk(), where it is used to calculate the

toSegmentIndex parameter.

When capture is stopped

If nProcessedCaptures = 0, you will also need to call psospaGetNoOfCaptures(), in order to determine

how many waveform segments were captured, before calling psospaGetValues() or

psospaGetValuesBulk().

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

nProcessedCaptures, on exit, the number of waveforms captured and processed.

Returns

PICO_OK

PICO_INVALID_PARAMETER

API functions

35Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.11 psospaGetScalingValues - get scaling factors used
to adjust the gain and offset of oscilloscope data

PICO_STATUS psospaGetScalingValues

(

int16_t handle,

PICO_SCALING_FACTORS_FOR RANGE TYPES_VALUES * scalingValues,

int16_t nChannels

)

This function is included for compatibility with other PicoScope series and will always return zero offset and unity
scaling factor.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

scalingValues, an array of PICO_SCALING_FACTORS_FOR_RANGE_TYPES_VALUES indicating the
channels and ranges for which to retrieve scaling factors.

nChannels, the number of elements in the scalingValues array.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_ARGUMENT_OUT_OF_RANGE

3.11.1 PICO_SCALING_FACTORS_FOR_RANGE_TYPES_VALUES
structure

typedef struct tPicoScalingFactorsForRangeTypes

{

PICO_CHANNEL channel;

int64_t rangeMin;

int64_t rangeMax;

PICO_PROBE_RANGE_INFO rangeType;

int16_t offset;

double scalingFactor

}

PICO_SCALING_FACTORS_FOR_RANGE_TYPES_VALUES;

This structure contains information needed to convert the source data to a measurement in volts.

Applicability

Calls to psospaGetScalingValues().

Elements

source, the channel or port to which the information applies.

API functions

36Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

rangeMin, rangeMax, rangeType, the voltage range for which minimum and maximum voltages are

required. See psospaSetChannelOn().

offset, the offset applied to the specified channel or port.

scalingFactor, the number that the specified channel or port has been multiplied by.

API functions

37Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.12 psospaGetStreamingLatestValues - read streaming
data

PICO_STATUS psospaGetStreamingLatestValues

(

int16_t handle,

PICO_STREAMING_DATA_INFO * streamingDataInfo,

uint64_t nStreamingDataInfos,

PICO_STREAMING_DATA_TRIGGER_INFO * triggerInfo

)

This function populates the streamingDataInfo structures with a description of the samples available and

the triggerInfo structure to indicate that a trigger has occurred and at what location.

streamingDataInfo should point to an array of structures, one per combination of enabled channel,
downsampling mode and data type, to determine how many samples are available for that combination. For
example, if you have enable two channels with both raw data and min-max aggregation, the array should contain
four structures. The number of available samples at a given instant may not be the same for each channel due to
the way samples are processed in blocks. If your application requires the same number of samples on each
channel, process the minimum number of samples reported by any channel. The later samples remain in the
buffer and can be processed on the next call.

Applicability

Streaming mode only

Arguments

handle, the device identifier returned by psospaOpenUnit().

streamingDataInfo, a list of structures. See PICO_STREAMING_DATA_INFO.

nStreamingDataInfos, the number of structures in the streamingDataInfo list.

triggerInfo, a structure containing trigger information. See PICO_STREAMING_DATA_TRIGGER_INFO.

Returns PICO_OK

PICO_WAITING_FOR_DATA_BUFFERS - indicates that you need to call

psospaSetDataBuffer() again as the previously supplied buffers have been filled. Note

this return status does not mean the call has failed: if the streamingDataInfo structures
indicate a non-zero number of samples (completing the previous buffer) then these are still
valid data which should be read by the user.

API functions

38Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.12.1 PICO_STREAMING_DATA_INFO

A list of structures of this type is passed to psospaGetStreamingLatestValues() in the

streamingDataInfo argument to specify parameters for streaming mode data capture. It is defined as
follows:

typedef struct tPicoStreamingDataInfo

{

PICO_CHANNEL channel_;

PICO_RATIO_MODE mode_;

PICO_DATA_TYPE type_;

int32_t noOfSamples_;

uint64_t bufferIndex_;

int32_t startIndex_;

int16_t overflow_;

} PICO_STREAMING_DATA_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

Set by the user:

channel_, the oscilloscope channel that the parameters apply to.

mode_, the downsampling mode to use.

type_, the data type to use for the sample data.

Set by driver when the function returns:

noOfSamples_, the number of samples made available by the driver.

bufferIndex_, an index to the waveform buffer within the capture buffer.

startIndex_, an index to the starting sample within the specified waveform buffer.

overflow_, a flag indicating whether a sample value overflowed (1) or not (0).

API functions

39Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.12.2 PICO_STREAMING_DATA_TRIGGER_INFO

A structure of this type is returned by psospaGetStreamingLatestValues() in the triggerInfo
argument to return information about trigger events.

typedef struct tPicoStreamingDataTriggerInfo

{

uint64_t triggerAt_;

int16_t triggered_;

int16_t autoStop_;

} PICO_STREAMING_DATA_TRIGGER_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

triggerAt_, an index to the sample on which the trigger occurred.

triggered_, a flag indicating whether a trigger occurred (1) or did not occur (0).

autoStop_, a flag indicating whether the oscilloscope has stopped capturing due to autoStop being set and
the requested number of samples having been collected (1) or not (0).

API functions

40Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.13 psospaGetTimebase - get available timebases
PICO_STATUS psospaGetTimebase

(

int16_t handle,

uint32_t timebase,

uint64_t noSamples,

double * timeIntervalNanoseconds,

uint64_t * maxSamples

uint64_t segmentIndex

)

This function calculates the sampling rate and maximum number of samples for a given timebase under the
specified conditions. The result will depend on the number of channels enabled by the last call to

psospaSetChannelOn() or psospaSetChannelOff().

The easiest way to find a suitable timebase is to call psospaNearestSampleIntervalStateless().
Alternatively, you can estimate the timebase number that you require, representing a desired sample interval in

picoseconds, then pass this timebase to psospaGetTimebase() and check the returned

timeIntervalNanoseconds argument. Repeat until you obtain the time interval that you need.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

timebase, in picoseconds, see timebase guide.

noSamples, the number of samples required. This value is used to calculate the most suitable time interval.

timeIntervalNanoseconds, on exit, the time interval between readings at the selected timebase. Use NULL
if not required.

maxSamples, on exit, the maximum number of samples available. The scope allocates a certain amount of
memory for internal overheads and this may vary depending on the number of segments, number of channels

enabled, and the timebase chosen. Use NULL if not required.

segmentIndex, the index of the memory segment to use.

Returns

PICO_OK

PICO_TOO_MANY_SAMPLES

PICO_INVALID_CHANNEL

PICO_INVALID_TIMEBASE

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_CHANNELS_OR_PORTS_ENABLED

API functions

41Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.14 psospaGetTriggerInfo - get trigger timing
information

PICO_STATUS psospaGetTriggerInfo

(

int16_t handle

PICO_TRIGGER_INFO * triggerInfo,

uint64_t firstSegmentIndex,

uint64_t segmentCount

)

This function gets trigger timing information from one or more buffer segments.

Call this function after data has been captured or when data has been retrieved from a previous capture.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

triggerInfo, a list of structures, one for each buffer segment, containing trigger information.

firstSegmentIndex, the index of the first segment of interest.

segmentCount, the number of segments of interest. Must be equal to (or less than) the number of structures

in *triggerInfo.

Returns

PICO_OK

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

API functions

42Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.14.1 PICO_TRIGGER_INFO - structure

A list of structures of this type containing trigger information is written by psospaGetTriggerInfo() to the

triggerInfo location. The structure is defined as follows:

typedef struct tPicoTriggerInfo

{

PICO_STATUS status;

uint64_t segmentIndex;

uint64_t triggerIndex;

double triggerTime;

PICO_TIME_UNITS timeUnits;

uint64_t missedTriggers;

uint64_t timeStampCounter;

} PICO_TRIGGER_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

status, indicates success or failure. This value may be the logical OR of multiple status values:

PICO_DEVICE_TIME_STAMP_RESET, the time stamp per waveform segment has been reset.

PICO_TRIGGER_TIME_NOT_REQUESTED, when requesting the psospaGetTriggerTimeOffset the

trigger time has not been set as described under triggerTime below.

PICO_TRIGGER_TIME_BUFFER_NOT_SET, trigger time buffer not set (see below).

PICO_TRIGGER_TIME_FAILED_TO_CALCULATE, the trigger time failed to be calculated.

For example the value 0x03000001 is a combination of:

PICO_DEVICE_TIME_STAMP_RESET bit or'ed with PICO_TRIGGER_TIME_NOT_REQUESTED

segmentIndex, the number of the segment.

triggerIndex, the index of the sample at which the trigger ocurred.

triggerTime, the time at which the trigger occurred. This is interpolated to greater precision than one sample

interval, using adjacent sample values. triggerTime is only available when trigger data has been requested

from the oscilloscope either by using PICO_RATIO_MODE_TRIGGER with psospaGetValues() or its
comparable bulk or async versions, or by using

PICO_RATIO_MODE_TRIGGER_DATA_FOR_TIME_CALCULATION with

psospaGetValuesOverlapped(). See Downsampling modes for more information. Otherwise, status

includes the value PICO_TRIGGER_TIME_NOT_REQUESTED and the triggerTime is zero.

timeUnits, the unit multiplier to use with triggerTime.

API functions

43Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

missedTriggers, the number of trigger events, if any, detected since the trigger point of the previous
segment. The trigger circuit is constantly counting events, regardless of whether the trigger is armed, so this
includes events which may have occurred during the post-trigger time of the previous capture, or the pre-trigger
time of the current capture, or in the "dead time" between captures (trigger re-arm time). By dividing

missedTriggers by the timeStampCounter difference between the previous and current capture, you can
calculate the input signal frequency even if this is faster than the scope's trigger re-arm time.

timeStampCounter, the time in samples from the first capture to the current capture. See Time stamping.

3.14.2 Time stamping

The timeStampCounter parameter in the PICO_TRIGGER_INFO structure allows you to determine the time
interval between the trigger points of consecutive captures with the same settings, in block or rapid block mode.
Only events causing the scope to trigger are timestamped. Additional trigger events occurring within a capture or
in the trigger rearm time between captures cannot be timestamped.

To get the offset between the respective segment trigger points, in sample intervals at the current timebase,

subtract the timeStampCounter for each segment from the previous segment’s timestamp. The timestamps
are accurate to one sample interval at the current timebase.

The timestamp of the first segment captured after changing any scope settings is arbitrary, and is only provided
to allow you to calculate the offset of subsequent segments. The timestamp counter may either maintain or reset
its value when scope settings are changed, and your code must not rely on particular behavior in this respect but
should instead check the status code.

The status code returned for each segment indicates whether the timestamp is valid. For example, if you set up
10 segments in memory and then carry out two rapid block runs of 5 captures each, the status codes for

segments 0 and 5 may have the bit-flag PICO_DEVICE_TIME_STAMP_RESET set, if you changed any settings
since the previous run, indicating that the timestamp for that segment is arbitrary. The other segments will not
have this flag set, indicating that the timestamp is valid and can be used to determine the time offset from the

previous segment. PICO_DEVICE_TIME_STAMP_RESET is a bit-flag so may be masked with any other status
flag that relates to that segment.

You can convert the intervals between segments from sample counts to time intervals if required. The current

sample interval can be found by using the timebase that was passed to psospaRunBlock in conjunction with

psospaGetTimebase.

timeStampCounter is a 56-bit unsigned value and will eventually wrap around. Your code must handle this
correctly, for example by masking the results of any arithmetic to the lower 56 bits. If the timestamp wraps
around more than once between two adjacent segments, this cannot be detected. This will only happen if the
interval between two adjacent trigger events exceeds 100 days (at the fastest timebase, or longer for slower
timebases), so is unlikely to be a concern in practical applications. Note that calculating the time offset between
adjacent segments, rather than to the first segment, reduces the complexity of dealing with wraparounds.

API functions

44Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.15 psospaGetTriggerTimeOffset - get timing
corrections

PICO_STATUS psospaGetTriggerTimeOffset

(

int16_t handle

int64_t * time,

PICO_TIME_UNITS * timeUnits,

uint64_t segmentIndex

)

This function gets the trigger time offset for waveforms obtained in block mode or rapid block mode. The trigger
time offset is an adjustment value used for correcting jitter in the waveform, and is intended mainly for
applications that wish to display the waveform with reduced jitter. The offset is zero if the waveform crosses the
threshold at the trigger sampling instant, or a positive or negative value if jitter correction is required. The value
should be added to the nominal trigger time to get the corrected trigger time.

This is the same as the triggerTime value obtained from psospaGetTriggerInfo(), which also provides
additional information. There is no need to call both functions.

Call this function after data has been captured or when data has been retrieved from a previous capture.

The trigger time offset is only available when trigger data has been requested from the oscilloscope either by

using PICO_RATIO_MODE_TRIGGER with psospaGetValues() or its comparable bulk or async versions, or

by using PICO_RATIO_MODE_TRIGGER_DATA_FOR_TIME_CALCULATION with

psospaGetValuesOverlapped(). See Downsampling modes for more information. Otherwise,

PICO_TRIGGER_TIME_NOT_REQUESTED is returned.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

time, on exit, the time at which the trigger point occurred

timeUnits, on exit, the time units in which time is measured. The possible values are:

PICO_FS

PICO_PS

PICO_NS

PICO_US

PICO_MS

PICO_S

segmentIndex, the number of the memory segment for which the information is required.

Returns

PICO_OK

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_TRIGGER_TIME_NOT_REQUESTED

API functions

45Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.16 psospaGetUnitInfo - get information about device
PICO_STATUS psospaGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize

PICO_INFO info

)

This function retrieves information about the specified oscilloscope. If the device fails to open, only the driver
version and error code are available to explain why the last open unit call failed. To find out about unopened

devices, call psospaEnumerateUnits().

Applicability

All modes

Arguments

handle, identifies the device from which information is required. If an invalid handle is passed, the error code
from the last unit that failed to open is returned.

string, on exit, the unit information string selected specified by the info argument. If string is NULL, only

requiredSize is returned – an initial call like this allows you to determine the required length of the string
before allocating it.

stringLength, the maximum number of int8_t values that may be written to string.

requiredSize, on exit, the required length of the string array.

info, a number specifying what information is required. The possible values are listed in the table below.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_INVALID_INFO

PICO_INFO_UNAVAILABLE

PICO_STRING_BUFFER_TO_SMALL, stringLength is insufficient for the required data, but non-zero.

API functions

46Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

info Example

0x00 PICO_DRIVER_VERSION

- Version number of psospa DLL

1,0,0,1

0x01 PICO_USB_VERSION

- Type of USB connection to device: 2.0 or 3.0

3.0

0x02 PICO_HARDWARE_VERSION

- Hardware version of device

1

0x03 PICO_VARIANT_INFO

- Model number of device

3418E

0x04 PICO_BATCH_AND_SERIAL

- Batch and serial number of device

10001/0001

0x05 PICO_CAL_DATE

- Calibration date of device

30Sep24

0x06 PICO_KERNEL_VERSION

- Version of kernel driver

1,1,2,4

0x07 PICO_DIGITAL_HARDWARE_VERSION

- Hardware version of the digital section

1

0x08 PICO_ANALOGUE_HARDWARE_VERSION

- Hardware version of the analog section

1

0x09 PICO_FIRMWARE_VERSION_1

- Version information of Firmware 1

1,0,0,1

0x0A PICO_FIRMWARE_VERSION_2

- Version information of Firmware 2

1,0,0,1

0x0F PICO_FIRMWARE_VERSION_3

- Version information of Firmware 3

1,0,0,1

0x10 PICO_FRONT_PANEL_FIRMWARE_VERSION

- Version of front-panel microcontroller firmware

1,0,0,1

API functions

47Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.17 psospaGetValues - get data after a capture has
completed

PICO_STATUS psospaGetValues

(

int16_t handle,

uint64_t startIndex,

uint64_t * noOfSamples,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

uint64_t segmentIndex,

int16_t * overflow

)

This function retrieves data, either with or without downsampling, starting at the specified sample number. It is
used to get the stored data from the scope after data collection has stopped, and store it in a user buffer

previously passed to psospaSetDataBuffer() or psospaSetDataBuffers(). It blocks the calling
function while retrieving data.

Applicability

All modes.

Arguments

handle, the device identifier returned by psospaOpenUnit().

startIndex, a zero-based index that indicates the start point for data collection. It is measured in sample
intervals from the start of the buffer.

noOfSamples, on entry, the number of raw samples to be processed. On exit, the actual number retrieved. The
number of samples retrieved will not be more than the number requested, and the data retrieved always starts
with the first sample captured.

downSampleRatio, the downsampling factor that will be applied to the raw data. Must be greater than zero.

downSampleRatioMode, which downsampling mode to use. The available values are:

PICO_RATIO_MODE_AGGREGATE

PICO_RATIO_MODE_DECIMATE

PICO_RATIO_MODE_AVERAGE

PICO_RATIO_MODE_TRIGGER - cannot be combined with any other ratio mode

PICO_RATIO_MODE_RAW

segmentIndex, the zero-based number of the memory segment where the data is stored.

overflow, on exit, a set of flags that indicate whether an overvoltage has occurred on any of the channels. It
is a bit field with bit 0 denoting Channel A.

Returns

API functions

48Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_TOO_MANY_SAMPLES

PICO_DATA_NOT_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_MEMORY

PICO_RATIO_MODE_NOT_SUPPORTED

3.17.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the PicoScope 3000E Series
oscilloscopes. The downsampling is done at high speed by dedicated hardware inside the scope, making your
application faster and more responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions, such as

psospaGetValues(). The following modes are available:

PICO_RATIO_MODE_AGGREGATE Reduces every block of n values to just two values: a
minimum and a maximum. The minimum and maximum
values are returned in two separate buffers.

PICO_RATIO_MODE_AVERAGE Reduces every block of n values to a single value
representing the average (arithmetic mean) of all the
values.

PICO_RATIO_MODE_DECIMATE Reduces every block of n values to just the first value in
the block, discarding all the other values.

PICO_RATIO_MODE_DISTRIBUTION Not implemented.

PICO_RATIO_MODE_TRIGGER Gets 20 samples either side of the trigger point.

When using trigger delay, this is the original event
causing the trigger and not the delayed point. This data
is available even when the original trigger point falls
outside the main preTrigger and postTrigger data.

Trigger data must be retrieved before attempting to get

the trigger time using psospaGetTriggerInfo(),

psospaGetTriggerTimeOffset() or

psospaGetValuesTriggerTimeOffsetBulk()

PICO_RATIO_MODE_RAW No downsampling. Returns raw data values.

PICO_RATIO_MODE_TRIGGER_DATA_FOR_TIME_C

ALCULATION

In overlapped mode only, causes trigger data to be
retrieved from the scope to calculate the trigger time for

psospaGetTriggerInfo(),

psospaGetTriggerTimeOffset() or

psospaGetValuesTriggerTimeOffsetBulk(),
without requiring a user buffer to be set for this data.

API functions

49Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

See psospaGetValuesOverlapped().

API functions

50Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.18 psospaGetValuesAsync - read data without blocking
PICO_STATUS psospaGetValuesAsync

(

int16_t handle,

uint64_t startIndex,

uint64_t noOfSamples,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

uint64_t segmentIndex,

PICO_POINTER lpDataReady,

PICO_POINTER pParameter

)

This function obtains data from the oscilloscope, with downsampling if requested, starting at the specified
sample number. It delivers the data using a callback.

Applicability

Streaming mode and block mode

Arguments

handle,

startIndex,

noOfSamples,

downSampleRatio,

downSampleRatioMode,

segmentIndex: see psospaGetValues()

lpDataReady, a pointer to the user-supplied psospaDataReady() callback function that will be called
when the data is ready.

pParameter, a void pointer that will be passed to the callback function. The data type is determined by the
application.

Returns

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_STARTINDEX_INVALID

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_DATA_NOT_AVAILABLE

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

API functions

51Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.19 psospaGetValuesBulk - read multiple segments
PICO_STATUS psospaGetValuesBulk

(

int16_t handle,

uint64_t startIndex,

uint64_t * noOfSamples,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms must have been collected
sequentially and in the same run.

Applicability

Rapid block mode

Arguments

handle, startIndex, noOfSamples, downSampleRatio, downSampleRatioMode,

overflow: see psospaGetValues()

fromSegmentIndex, toSegmentIndex: zero-based numbers of the first and last memory segments
where the data is stored.

Returns

PICO_OK

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_INVALID_SAMPLERATIO

API functions

52Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.20 psospaGetValuesBulkAsync - read multiple
segments without blocking

PICO_STATUS psospaGetValuesBulkAsync

(

int16_t handle,

uint64_t startIndex,

uint64_t noOfSamples,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

PICO_POINTER lpDataReady,

PICO_POINTER pParameter

)

This function retrieves more than one waveform at a time from the driver in rapid block mode after data collection
has stopped. The waveforms must have been collected sequentially and in the same run. The data is returned
using a callback.

Applicability

Rapid block mode

Arguments

handle,

startIndex,

noOfSamples,

downSampleRatio,

downSampleRatioMode: see psospaGetValues()

fromSegmentIndex,

toSegmentIndex: see psospaGetValuesBulk()

lpDataReady,

pParameter:see psospaGetValuesAsync()

Returns

PICO_OK

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_STARTINDEX_INVALID

API functions

53Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.21 psospaGetValuesOverlapped - make a deferred
request for data before running the scope

PICO_STATUS psospaGetValuesOverlapped

(

int16_t handle,

uint64_t startIndex,

uint64_t * noOfSamples,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request in block or rapid block mode. The request will

be executed, and the arguments validated, when you call psospaRunBlock(). The advantage of this method is

that the driver makes contact with the scope only once, when you call psospaRunBlock(), compared with the

two contacts that occur when you use the conventional psospaRunBlock(), psospaGetValues() calling
sequence. This slightly reduces the dead time between successive captures.

After calling psospaRunBlock(), you can optionally use psospaGetValues() to request further copies of
the data. This might be required if you wish to display the data with different data reduction settings.

To stop collecting data, call psospaStopUsingGetValuesOverlapped().

Applicability

Rapid block mode

Arguments

handle,

startIndex,

noOfSamples,

downSampleRatio,

downSampleRatioMode,

overflow, see psospaGetValues()

fromSegmentIndex,

toSegmentIndex, see psospaGetValuesBulk().

Returns

PICO_OK

PICO_INVALID_PARAMETER

API functions

54Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.21.1 Using GetValuesOverlapped()

1. Open the oscilloscope using psospaOpenUnit().

2. Select channel ranges and AC/DC coupling using psospaSetChannelOn().

3. Use psospaNearestSampleIntervalStateless(), to find a valid sampling interval to use

4. Use the trigger setup functions psospaSetTriggerChannelConditions(),

psospaSetTriggerChannelDirections() and psospaSetTriggerChannelProperties() to
set up the trigger if required.

5. Use psospaSetDataBuffer() to tell the driver where your memory buffer is.

6. Set up the transfer of the block of data from the oscilloscope using psospaGetValuesOverlapped().

7. Start the oscilloscope running using psospaRunBlock().

8. Wait until the oscilloscope is ready using the psospaBlockReady() callback (or poll using

psospaIsReady()).
9. Display or process the data.
10. Repeat steps 7 to 9 if needed.

11. Stop the oscilloscope by calling psospaStop().

A similar procedure can be used with rapid block mode.

API functions

55Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.22 psospaGetValuesTriggerTimeOffsetBulk - get trigger
time offsets for multiple segments

PICO_STATUS psospaGetValuesTriggerTimeOffsetBulk

(

int16_t handle,

int64_t * times,

PICO_TIME_UNITS * timeUnits,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block mode or rapid block mode.

It is a more efficient alternative to calling psospaGetTriggerTimeOffset() once for each waveform

required. See psospaGetTriggerTimeOffset() for an explanation of trigger time offsets.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

times, an array of integers. On exit, the time offset for each requested segment index. times[0] will hold the

fromSegmentIndex time offset and the last times[] index will hold the toSegmentIndex time offset.
The array must be long enough to hold the number of requested times.

timeUnits, an array of integers. The array must be long enough to hold the number of requested times. On exit,

timeUnits[0] will contain the time unit for fromSegmentIndex and the last element will contain the time

unit for toSegmentIndex. PICO_TIME_UNITS values are listed under

psospaGetTriggerTimeOffset().

fromSegmentIndex, the first segment for which the time offset is required.

toSegmentIndex, the last segment for which the time offset is required. If toSegmentIndex is less than

fromSegmentIndex then the driver will wrap around from the last segment to the first.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_TRIGGER_TIME_NOT_REQUESTED

API functions

56Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.23 psospaGetVariantDetails - get specification details
in JSON format

PICO_STATUS psospaGetVariantDetails

(

const int8_t* variantName,

int16_t variantNameLength,

int8_t* outputString,

int32_t* outputStringLength

PICO_TEXT_FORMAT textFormat

)

This function returns a string (in the requested textFormat format) containing specification details of the

psospa variant requested by variantName. The data is copied into the location provided by outputString

only if a non-null location is provided and outputStringLength is sufficient. If making an initial call to find the

required buffer size, call with outputStringLength set to zero. outputString may be nullptr in this

case and PICO_OK will still be returned.

Applicability

All modes

Arguments

variantName, the string variant name for which data is being requested, for example "3418E". The variant

name for a currently connected device can be found using psospaGetUnitInfo() if the unit is open, or

psospaEnumerateUnits() before opening. Passing a variantName of "all-series" returns a list of all
supported variant names for each series supported by the driver.

variantNameLength, the size of the variantName array.

outputString, the location to copy the 'textFormat' formatted object string to.

outputStringLength, the size of the outputString array. On return, the size of the buffer that has been
copied if successful, or otherwise the size of the buffer that would be required to contain the requested data.

textFormat, the text format type to request. Supplying PICO_JSON_DATA will return the given device’s

capabilities structured in json. Supplying PICO_JSON_SCHEMA will return the given device’s JSON schema.

Returns

PICO_OK

PICO_INVALID_PARAMETER

PICO_INVALID_VARIANT

PICO_NULL_PARAMETER, a required parameter is nullptr

PICO_STRING_BUFFER_TO_SMALL, outputStringLength is insufficient for the required data, but non-
zero.

3.23.1 PICO_TEXT_FORMAT textFormat

typedef enum enPicoTextFormat

{

PICO_JSON_DATA,

PICO_JSON_SCHEMA,

} PICO_TEXT_FORMAT;

API functions

57Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

This is used to identify the format of the text data requested.

Applicability

Calls to psospaGetVariantDetails

Values

PICO_JSON_DATA, is used as an identifier for JSON data

PICO_JSON_SCHEMA, is used as an identifier for JSON schema

API functions

58Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.24 psospaIsReady - get status of block capture
PICO_STATUS psospaIsReady

(

int16_t handle,

int16_t * ready

)

This function may be used instead of a callback function to receive data from psospaRunBlock(). To use this

method, pass a NULL pointer as the lpReady argument to psospaRunBlock(). You must then poll the driver
to see if it has finished collecting the requested samples.

Applicability

Block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

ready, output: indicates the state of the collection. If zero, the device is still collecting. If non-zero, the device

has finished collecting and psospaGetValues() can be used to retrieve the data.

Returns

PICO_OK

PICO_NULL_PARAMETER

API functions

59Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.25 psospaMemorySegments - set number of memory
segments

PICO_STATUS psospaMemorySegments

(

int16_t handle

uint64_t nSegments,

uint64_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each capture can use up to the
scope's available memory. This function allows you to divide the memory into a number of segments so that the
scope can store several waveforms sequentially.

See also psospaMemorySegmentsBySamples() which sets up the memory segments to each fit a required
number of samples.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

nSegments, the number of segments required. See data sheet for capacity of each model.

nMaxSamples, on exit, the number of samples available in each segment. This is the total number over all
channels, so if more than one channel is in use then the number of samples available to each channel is

nMaxSamples divided by the number of channels.

Returns

PICO_OK

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

API functions

60Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.26 psospaMemorySegmentsBySamples - set size of
memory segments

PICO_STATUS psospaMemorySegmentsBySamples

(

int16_t handle

uint64_t nSamples,

uint64_t * nMaxSegments

)

This function sets the number of samples per memory segment. Like psospaMemorySegments() it controls
the segmentation of the capture memory, but in this case you specify the number of samples rather than the
number of segments.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

nSamples, the number of samples required in each segment. See data sheet for capacity of each model. This
is the total number over n channels, where n is the number of enabled channels or MSO ports rounded up to the
next power of 2. For example, with 5 channels or ports enabled, n is 8. If n > 1, the number of segments available
will be reduced accordingly.

nMaxSegments, on exit, the number of segments into which the capture memory has been divided.

Returns

PICO_OK

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

API functions

61Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.27 psospaNearestSampleIntervalStateless - get nearest
sampling interval

PICO_STATUS psospaNearestSampleIntervalStateless

(

int16_t handle,

PICO_CHANNEL_FLAGS enabledChannelFlags,

double timeIntervalRequested,

uint8_t roundFaster,

PICO_DEVICE_RESOLUTION resolution,

uint32_t * timebase,

double * timeIntervalAvailable

)

This function returns the nearest possible sample interval to the requested sample interval. It does not change
the configuration of the oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

enabledChannelFlags, see psospaGetMinimumTimebaseStateless().

timeIntervalRequested, the time interval, in seconds, that you would like to obtain.

roundFaster, if the requested time interval cannot be exactly achieved then, when 0, the timebase slower
than the requested is returned, when 1 the timebase faster than the requested is returned.

resolution, the vertical resolution (number of bits) for which the oscilloscope will be configured.

timebase, on exit, the number of the nearest available timebase, in picoseconds.

timeIntervalAvailable, on exit, the nearest available time interval, in seconds.

Returns

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

PICO_NO_CHANNELS_OR_PORTS_ENABLED

PICO_INVALID_DIGITAL_PORT

API functions

62Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.28 psospaNoOfStreamingValues - get number of
captured samples

PICO_STATUS psospaNoOfStreamingValues

(

int16_t handle,

uint64_t * noOfValues

)

This function returns the number of samples available after data collection in streaming mode. Call it after calling

psospaStop().

Applicability

Streaming mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

noOfValues, on exit, the number of samples of raw data, per enabled channel, available for retrieval after the
end of the capture.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_NOT_USED

PICO_BUSY

API functions

63Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.29 psospaOpenUnit - open a scope device
PICO_STATUS psospaOpenUnit

(

int16_t * handle,

int8_t * serial,

PICO_DEVICE_RESOLUTION resolution

PICO_USB_POWER_DETAILS * powerDetails

)

This function opens a PicoScope 3000E Series scope attached to the computer. The maximum number of units
that can be opened depends on the operating system, the kernel driver and the computer.

If the function returns PICO_FIRMWARE_UPDATE_REQUIRED_TO_USE_DEVICE_WITH_THIS_DRIVER, all
other API calls that perform operations with the same device will fail with the same return value until

psospaStartFirmwareUpdate() is called. Users should avoid unplugging the device during this operation,
otherwise there is a small chance that the firmware could be corrupted.

Applicability

All modes

Arguments

handle, on exit, the result of the attempt to open a scope:
–1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope

If a valid handle is returned, it must be used in all subsequent calls to API functions to identify this scope.

serial, on entry, a null-terminated string containing the serial number of the scope to be opened. If serial is
NULL then the function opens the first scope found; otherwise, it tries to open the scope that matches the string.

resolution, the required vertical resolution (in bits).

powerDetails, returns details about the unit power setup, can be null if not required.

Returns

PICO_OK

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND (if the specified unit was not found)

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

PICO_FIRMWARE_UPDATE_REQUIRED_TO_USE_DEVICE_WITH_THIS_DRIVER - call

psospaCheckForUpdate() and then psospaStartFirmwareUpdate()

PICO_POWER_MANAGER (power setup is invalid)
PICO_USB_VERSION_NOT_SUPPORTED (USB 1.x connections not supported)

API functions

64Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.29.1 PICO_USB_POWER_DETAILS

typedef struct tPicoUsbPowerDetails

{

 uint8_t powerErrorLikely_;

 PICO_USB_POWER_DELIVERY dataPort_;

 PICO_USB_POWER_DELIVERY powerPort_;

} PICO_USB_POWER_DETAILS;

Applicability

Set by psospaOpenUnit() if a non-null pointer is passed for powerDetails

Elements

powerErrorLikely_, If psospaOpenUnit fails, this indicates whether it was likely that the failure was
due to an issue with the power supply. Non-zero indicates that a power failure was likely, zero indicates that it
was unlikely

dataPort_, USB power details for the data port. See PICO_USB_POWER_DELIVERY

powerPort_, USB power details for the power port. See PICO_USB_POWER_DELIVERY

3.29.2 PICO_USB_POWER_DELIVERY

typedef struct tPicoUsbPowerDelivery

{

 uint8_t valid_;

 uint32_t busVoltagemV_;

 uint32_t rpCurrentLimitmA_;

 uint8_t partnerConnected_;

 uint8_t ccPolarity_;

 PICO_USB_POWER_DELIVERY_DEVICE_TYPE attachedDevice_;

 uint8_t contractExists_;

 uint32_t currentPdo_;

 uint32_t currentRdo_;

} PICO_USB_POWER_DELIVERY;

Applicability

Forms part of the PICO_USB_POWER_DETAILS set by psospaOpenUnit()

Elements

valid_, non-zero, indicates that the following data is valid. Zero indicates that they are not (likely no USB
connection on this port)

busVoltagemV_, the USB voltage in mV

rpCurrentLimitmA_, the current limit set by the USB CC lines in mA

partnerConnected_, non-zero indicates that there is a compatible USB-C power connected.

API functions

65Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

ccPolarity_, indicates which way up the USB-C connector is

attachedDevice_, indicates the type of device connected to the unit via this port

contractExists_, non-zero indicates that an explicit PD contract exists between the unit and its partner

currentPdo_, current power data object, refer to chapter 6.4 of the PD 2.0 or 3.0 specifications

currentRdo_, current request data object, refer to chapter 6.4 of the PD 2.0 or 3.0 specifications

API functions

66Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.30 psospaPingUnit - check if device is still connected
PICO_STATUS psospaPingUnit

(

int16_t handle

)

This function can be used to check that the already opened device is still connected to the USB port and
communication is successful.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

Returns

PICO_OK

PICO_BUSY

PICO_NOT_RESPONDING

API functions

67Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.31 psospaQueryMaxSegmentsBySamples - get number
of segments

PICO_STATUS psospaQueryMaxSegmentsBySamples

(

int16_t handle,

uint64_t nSamples,

uint32_t nChannelEnabled,

uint64_t * nMaxSegments,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the maximum number of memory segments available given the number of samples per
segment. It does not change the current segment configuration of the scope.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

nSamples, the number of samples per segment.

nChannelEnabled, the number of channels enabled.

nMaxSegments, on exit, the maximum number of segments that can be requested.

resolution, an enumerated type representing the hardware resolution.

Returns

PICO_OK

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

68Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.32 psospaQueryOutputEdgeDetect – check if output
edge detection is enabled

PICO_STATUS psospaQueryOutputEdgeDetect

(

int16_t handle,

int16_t * state

)

This function queries the state of the trigger function edge detection, set with

psospaSetOutputEdgeDetect().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

state, on exit, the current state of trigger function edge detection.

0 = off

1 = on

Returns

PICO_OK

API functions

69Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.33 psospaResetChannelsAndReportAllChannelsOvervo
ltageTripStatus - reset 50 input protection

PICO_STATUS psospaResetChannelsAndReportAllChannelsOvervoltageTripStatus

(

int16_t handle,

PICO_CHANNEL_OVERVOLTAGE_TRIPPED * allChannelsTrippedStatus,

uint8_t nChannelTrippedStatus

)

In coupling mode, the oscilloscope hardware includes an overvoltage protection circuit which disconnects
the input to prevent damage.

This function resets all oscilloscope channels and then reports the overvoltage trip status for all channels. Use
this to reset after an overvoltage trip event, and check that the channels haven't immediately tripped again due to
a continuing overvoltage.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

allChannelsTrippedStatus, a pointer to an array of PICO_CHANNEL_OVERVOLTAGE_TRIPPED
structs. On exit, the overvoltage trip status of each channel will be written to this array.

nChannelTrippedStatus, the number of PICO_CHANNEL_OVERVOLTAGE_TRIPPED structs in the
above array.

Returns

PICO_OK

PICO_HARDWARE_CAPTURING_CALL_STOP

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

API functions

70Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.34 psospaReportAllChannelsOvervoltageTripStatus-
check if 50 input protection has tripped

PICO_STATUS psospaReportAllChannelsOvervoltageTripStatus

(

int16_t handle,

PICO_CHANNEL_OVERVOLTAGE_TRIPPED * allChannelsTrippedStatus,

uint8_t nChannelTrippedStatus

)

This function reports the overvoltage trip status for all channels without resetting their status. Use it to find out
which channels caused an overvoltage trip event.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

allChannelsTrippedStatus, a pointer to an array of PICO_CHANNEL_OVERVOLTAGE_TRIPPED
channel status flags. On exit, the overvoltage trip status of each channel will be written to this array.

nChannelTrippedStatus, the number of PICO_CHANNEL_OVERVOLTAGE_TRIPPED structs in
the above array.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

3.34.1 PICO_CHANNEL_OVERVOLTAGE_TRIPPED structure

typedef struct tPicoChannelOvervoltageTripped

{

PICO_CHANNEL channel_;

uint8_t tripped_;

} PICO_CHANNEL_OVERVOLTAGE_TRIPPED;

This structure contains information about the overvoltage trip on a given channel. An overvoltage trip occurs when
an oscilloscope channel in 50 coupling mode detects an excessive voltage on its input, and disconnects the
scope input to prevent damage.

Applicability

Analog input channels

Elements

channel_, the oscilloscope channel to which the information applies.

tripped_, a flag indicating whether the overvoltage trip occurred (non-zero) or did not occur (zero).

API functions

71Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.35 psospaRunBlock - start block mode capture
PICO_STATUS psospaRunBlock

(

int16_t handle,

uint64_t noOfPreTriggerSamples,

uint64_t noOfPostTriggerSamples,

uint32_t timebase,

double * timeIndisposedMs,

uint64_t segmentIndex,

psospaBlockReady lpReady,

PICO_POINTER pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this process, see Using block
mode.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples (see
below for details). The total number of samples must not be more than the size of the segment referred to by

segmentIndex.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

noOfPreTriggerSamples, the number of samples to return before the trigger event. If no trigger has been

set, then this argument is added to noOfPostTriggerSamples to give the maximum number of data points
(samples) to collect.

noOfPostTriggerSamples, the number of samples to return after the trigger event. If no trigger event has

been set, then this argument is added to noOfPreTriggerSamples to give the maximum number of data
points to collect. If a trigger condition has been set, this specifies the number of data points to collect after a
trigger has fired, and the number of samples to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number, indicating the sample interval, in picoseconds. See the guide to calculating timebase
values. If the value you pass does not correspond to a valid sampling rate for the current scope setup, the scope
will select the nearest available sampling rate. It is recommended to call

psospaNearestSampleIntervalStateless() to determine a valid sample interval before calling this
function.

timeIndisposedMs, on exit, the time in milliseconds that the scope will spend collecting samples. This does
not include any auto trigger timeout. If this pointer is null, nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to use.

lpReady, a pointer to the psospaBlockReady() callback function that the driver will call when the data has

been collected. To use the psospaIsReady() polling method instead of a callback function, set this pointer to

NULL.

pParameter, a void pointer that is passed to the psospaBlockReady() callback function. The callback
can use this pointer to return arbitrary data to the application.

API functions

72Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

Returns

PICO_OK

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_CHANNEL

PICO_INVALID_TRIGGER_CHANNEL

PICO_INVALID_CONDITION_CHANNEL

PICO_TOO_MANY_SAMPLES

PICO_INVALID_TIMEBASE

PICO_CONFIG_FAIL

PICO_INVALID_PARAMETER

PICO_TRIGGER_ERROR

PICO_FW_FAIL

PICO_PULSE_WIDTH_QUALIFIER

PICO_SEGMENT_OUT_OF_RANGE (in Overlapped mode)

PICO_STARTINDEX_INVALID (in Overlapped mode)

PICO_INVALID_SAMPLERATIO (in Overlapped mode)

PICO_CONFIG_FAIL

PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generator is set to trigger on AUX input with incompatible
trigger type)

API functions

73Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.36 psospaRunStreaming - start streaming mode
capture

PICO_STATUS psospaRunStreaming

(

int16_t handle,

double * sampleInterval,

PICO_TIME_UNITS sampleIntervalTimeUnits

uint64_t maxPreTriggerSamples,

uint64_t maxPostTriggerSamples,

int16_t autoStop,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode

)

This function tells the oscilloscope to start collecting data in streaming mode. The device can return either raw or
downsampled data to your application while streaming is in progress. Call

psospaGetStreamingLatestValues() to retrieve the data. See Using streaming mode for a step-by-step
guide to this process.

When a trigger is set, the total number of samples is the sum of maxPreTriggerSamples and

maxPostTriggerSamples. If autoStop is false then this will become the maximum number of samples
without downsampling.

When downsampled data is returned, the raw samples remain stored on the device. The maximum number of raw
samples that can be retrieved after streaming has stopped is (scope's memory size) / (resolution data size *
channels), where channels is the number of active channels rounded up to a power of 2.

Applicability

Streaming mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

sampleInterval, on entry, the requested time interval between samples; on exit, the actual time interval
used

sampleIntervalTimeUnits, the unit of time used for sampleInterval. Use one of these values:

PICO_FS

PICO_PS

PICO_NS

PICO_US

PICO_MS

PICO_S

maxPreTriggerSamples, the maximum number of raw samples before a trigger event for each enabled
channel. If no trigger condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples after a trigger event for each enabled
channel. If no trigger condition is set, this argument states the maximum number of samples to be stored.

autoStop, a flag that specifies if the streaming should stop when all of maxSamples have been captured.

downSampleRatio, downSampleRatioMode: see psospaGetValues().

API functions

74Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_STREAMING_FAILED

PICO_TRIGGER_ERROR

PICO_INVALID_SAMPLE_INTERVAL

PICO_INVALID_BUFFER

PICO_FW_FAIL

PICO_MEMORY

PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generator is set to trigger on AUX input with incompatible
trigger type)

PICO_HARDWARE_CAPTURING_CALL_STOP

PICO_STREAMING_COMBINATION_OF_RAW_DATA_AND_ONE_AGGREGATION_DATA_TYPE_ALLOWED

PICO_TIME_UNITS_OUT_OF_RANGE

PICO_NO_SAMPLES_REQUESTED

PICO_TOO_FEW_REQUESTED_STREAMING_SAMPLES

PICO_TOO_MANY_SAMPLES

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_INVALID_RATIO_MODE

PICO_STREAMING_DOES_NOT_SUPPORT_TRIGGER_RATIO_MODES

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_THRESHOLD_UPPER_LOWER_MISMATCH

PICO_TRIGGER_CHANNEL_NOT_ENABLED

PICO_CONDITION_HAS_NO_TRIGGER_PROPERTY

PICO_INVALID_DIGITAL_PORT

PICO_TRIGGER_PORT_NOT_ENABLED

PICO_DIGITAL_DIRECTION_NOT_SET

PICO_WARNING_AUX_OUTPUT_CONFLICT

PICO_READ_SELECTION_OUT_OF_RANGE

PICO_RATIO_MODE_TRIGGER_MASKING_INVALID

PICO_USE_THE_TRIGGER_READ

PICO_USE_A_DATA_READ

PICO_RATIO_MODE_REQUIRES_NUMBER_OF_SAMPLES_TO_BE_SET

PICO_OPERATION_FAILED

PICO_ARGUMENT_OUT_OF_RANGE

PICO_BUFFERS_NOT_SET

PICO_STREAMING_ONLY_SUPPORTS_ONE_READ

PICO_NOT_RESPONDING_OVERHEATED

PICO_ENDPOINT_MISSING

PICO_UNKNOWN_ENDPOINT_REQUEST

API functions

75Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.37 psospaSetAuxIoMode - configure the AUX IO
connector

PICO_STATUS psospaSetAuxIoMode

(

int16_t handle

PICO_AUXIO_MODE auxIoMode

)

Configures the AuxIO mode/function using the PICO_AUXIO_MODE enum values.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

auxIoMode, required AuxIO mode:

PICO_AUXIO_INPUT, high-impedance input for use triggering the scope or AWG if configured.

PICO_AUXIO_HIGH_OUT, constant logic high output.

PICO_AUXIO_LOW_OUT, constant logic low output.

PICO_AUXIO_TRIGGER_OUT, logic high pulse during the post-trigger acquisition time.

Returns

PICO_OK

PICO_OPERATION_FAILED, failed to change AuxIO mode

PICO_WARNING_AUX_OUTPUT_CONFLICT, the AuxIO mode has been set to an output mode while the scope
or AWG is set to trigger on it. This is allowed but will result in the scope or AWG triggering on the output value of
the AuxIO.

API functions

76Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.38 psospaSetChannelOff - disable one channel
PICO_STATUS psospaSetChannelOff

(

int16_t handle,

PICO_CHANNEL channel

)

This function switches an analog input channel off. It has the opposite function to psospaSetChannelOn().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

channel, see psospaSetChannelOn().

Returns

PICO_OK

PICO_INVALID_CHANNEL

API functions

77Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.39 psospaSetChannelOn - enable and set options for
one channel

PICO_STATUS psospaSetChannelOn

(

 int16_t handle,

 PICO_CHANNEL channel,

 PICO_COUPLING coupling,

 int64_t rangeMin,

 int64_t rangeMax,

 PICO_PROBE_RANGE_INFO rangeType,

 double analogueOffset,

 PICO_BANDWIDTH_LIMITER bandwidth;

)

This function switches an analog input channel on and specifies its input coupling type, voltage range, analog
offset and bandwidth limit.

To switch off, use psospaSetChannelOff().

For digital ports, see psospaSetDigitalPortOn().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

channel, the channel to be configured. The values (subject to the number of channels on your oscilloscope
model) are:

PICO_CHANNEL_A, PICO_CHANNEL_B, PICO_CHANNEL_C, PICO_CHANNEL_D

coupling, the impedance and coupling type. The values supported are:

PICO_AC, 1 impedance, AC coupling. The channel accepts input frequencies from about 1 hertz up to
its maximum –3 dB analog bandwidth.*

PICO_DC, 1 impedance, DC coupling. The scope accepts all input frequencies from zero (DC) up to its
maximum –3 dB analog bandwidth.*

PICO_DC_50OHM, 50 impedance, DC coupling. The higher-voltage input ranges may not be available in this
mode - consult data sheet.

rangeMin, minimum value of the input range, expressed in the units selected by rangeType below.
rangeMax, maximum value of the range , expressed in the units selected by rangeType below.

rangeType, defines the units of rangeMin/rangeMax and any multiplication factor of the probe:

PICO_PROBE_NONE_NV, range is defined in nanovolts (nV) with no probe scaling

PICO_X1_PROBE_NV, range is defined in nanovolts (nV) with scaling for a 1:1 probe (same as no

probe scaling)

PICO_X10_PROBE_NV, range is defined in nanovolts (nV) with scaling for a 10:1 probe

API functions

78Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

rangeMin and rangeMax must correspond to one of the available input voltage ranges of the oscilloscope as

described in the datasheet or returned by psospaGetVariantDetails(). For example, the 5 mV range would

be represented as rangeMin –5 000 000, rangeMax 5 000 000, rangeType

PICO_PROBE_NONE_NV.

analogueOffset, a voltage to add to the input channel before digitization. The allowable analog offset for a

given input voltage range can be read from psospaGetAnalogueOffsetLimits(), or the values for all

ranges are included in the JSON returned by psospaGetVariantDetails().

bandwidth, the bandwidth limiter setting:

PICO_BW_FULL, the scope's full specified bandwidth. This may vary depending on selected resolution and
voltage range as described in the device datasheet, in which case the driver will automatically select the
highest available bandwidth for the channel based on those settings.

PICO_BW_20MHZ: –3 dB bandwidth limited to 20 MHz

PICO_BW_50MHz: –3 dB bandwidth limited to 50 MHz

PICO_BW_100MHz: –3 dB bandwidth limited to 100 MHz

PICO_BW_200MHZ: –3 dB bandwidth limited to 200 MHz

PICO_BW_350MHz: –3 dB bandwidth limited to 350 MHz

PICO_BW_500MHz: –3 dB bandwidth limited to 500 MHz
Available values vary by device model as described in the data sheet or reported by

psospaGetVariantDetails().

Returns

PICO_OK

PICO_INVALID_CHANNEL

PICO_INVALID_VOLTAGE_RANGE

PICO_INVALID_COUPLING

PICO_COUPLING_NOT_SUPPORTED

PICO_INVALID_ANALOGUE_OFFSET

PICO_INVALID_BANDWIDTH

PICO_BANDWIDTH_NOT_SUPPORTED

PICO_WARNING_PROBE_CHANNEL_OUT_OF_SYNC

API functions

79Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.40 psospaSetDataBuffer - provide location of data
buffer

PICO_STATUS psospaSetDataBuffer

(

int16_t handle,

PICO_CHANNEL channel,

PICO_POINTER buffer,

uint64_t nSamples,

PICO_DATA_TYPE dataType,

uint64_t waveform,

PICO_RATIO_MODE downSampleRatioMode,

PICO_ACTION action

)

This function tells the driver where to store the data, either unprocessed or downsampled, that will be returned

after the next call to one of the GetValues functions. The function allows you to specify only a single buffer, so

for aggregation mode, which requires two buffers, you must call psospaSetDataBuffers() instead.

The buffer persists between captures until it is replaced with another buffer or buffer is set to NULL. The

buffer can be replaced at any time between calls to psospaGetValues().

You must allocate memory for the buffer before calling this function.

Applicability

Block, rapid block and streaming modes. All downsampling modes except aggregation.

Arguments

handle, the device identifier returned by psospaOpenUnit().

channel, the channel you want to use with the buffer. You must call this function for each channel for which
you want to retrieve data.

buffer, the location of the buffer.

nSamples, the length of the buffer array.

dataType, the data type that you wish to use for the sample values:

PICO_INT8_T, 8-bit signed integer

PICO_INT16_T, 16-bit signed integer

PICO_INT32_T, 32-bit signed integer

PICO_UINT32_T, 32-bit unsigned integer

PICO_INT64_T, 64-bit signed integer
Note: valid data types vary by resolution and downsample ratio mode.

waveform, the segment index.

downSampleRatioMode, the downsampling mode. See psospaGetValues() for the available modes, but

note that a single call to psospaSetDataBuffer() can only associate one buffer with one downsampling

mode. If you intend to call psospaGetValues() with more than one downsampling mode activated, then you

must call psospaSetDataBuffer() several times to associate a separate buffer with each downsampling
mode.

API functions

80Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

action, the method to use when creating the buffer. The buffers are added to a unique list for the channel,

data type and segment. Therefore you must use PICO_CLEAR_ALL to remove all buffers already written.

PICO_ACTION values can be ORed together to allow clearing and adding in one call.

Returns

PICO_OK

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_INVALID_PARAMETER

API functions

81Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.41 psospaSetDataBuffers - provide locations of both
data buffers

PICO_STATUS psospaSetDataBuffers

(

int16_t handle,

PICO_CHANNEL channel,

PICO_POINTER bufferMax,

PICO_POINTER bufferMin,

uint64_t nSamples,

PICO_DATA_TYPE dataType,

uint64_t waveform,

PICO_RATIO_MODE downSampleRatioMode,

PICO_ACTION action

)
This function tells the driver the location of one or two buffers for receiving data. You need to allocate memory for
the buffers before calling this function. If you do not need two buffers, because you are not using aggregate

mode, then you can optionally use psospaSetDataBuffer() instead.

Applicability

Block and streaming modes with aggregation.

Arguments

handle, the device identifier returned by psospaOpenUnit().

channel, the channel for which you want to set the buffers.

bufferMax, a buffer to receive the maximum data values in aggregation mode, or the non-aggregated values
otherwise.

bufferMin, a buffer to receive the minimum aggregated data values. Not used in other downsampling modes.

nSamples,

dataType,

waveform, see psospaSetDataBuffer().

downSampleRatioMode, the downsampling mode. See psospaGetValues() for the available modes, but

note that a single call to psospaSetDataBuffers() can only associate buffers with one downsampling

mode. If you intend to call psospaGetValues() with more than one downsampling mode activated, then you

must call psospaSetDataBuffers() several times to associate buffers with each downsampling mode.

action, see psospaSetDataBuffer().

Returns

PICO_OK

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_INVALID_PARAMETER

API functions

82Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.42 psospaSetDeviceResolution – set the hardware
resolution

PICO_STATUS psospaSetDeviceResolution

(

int16_t handle,

PICO_DEVICE_RESOLUTION resolution

)

This function sets the sampling resolution of the device. At 10-bit resolution, the maximum capture buffer length
and sample rate is half that of 8-bit mode.

When you change the device resolution, the driver discards all previously captured data.

Applicability

All modes.

Arguments

handle, the device identifier returned by psospaOpenUnit().

resolution, determines the resolution of the device when opened, the available values are one of the

PICO_DEVICE_RESOLUTION.

Returns

PICO_INVALID_DEVICE_RESOLUTION if resolution is out of range.

3.42.1 PICO_DEVICE_RESOLUTION enumerated type

typedef enum enPicoDeviceResolution

{

PICO_DR_8BIT = 0,

PICO_DR_10BIT = 10,

} PICO_DEVICE_RESOLUTION;

These values specify the resolution of the sampling hardware in the oscilloscope. Each mode divides the input
voltage range into a number of levels as listed below.

Applicability

Calls to psospaSetDeviceResolution() etc.

Values

PICO_DR_8BIT – 8-bit resolution (256 levels)

PICO_DR_10BIT – 10-bit resolution (1024 levels)

API functions

83Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.43 psospaSetDigitalPortOff – switch off a digital port
PICO_STATUS psospaSetDigitalPortOff

(

int16_t handle,

PICO_CHANNEL port

)

This function switches off a given digital port.

Applicability

All modes.
Any model with MSO channels fitted.

Arguments

handle, the device identifier returned by psospaOpenUnit().

port, see psospaSetDigitalPortOn().

Returns

PICO_OK

PICO_INVALID_DIGITAL_PORT

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

API functions

84Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.44 psospaSetDigitalPortOn – set up and enable a
digital port

PICO_STATUS psospaSetDigitalPortOn

(

int16_t handle,

PICO_CHANNEL port,

double logicThresholdLevelVolts

)

This function switches on a digital port and sets its corresponding logic threshold voltage.

Refer to the data sheet for the fastest sampling rates available with different combinations of analog and digital
inputs. In most cases the fastest rates will be obtained by disabling all analog channels. When all analog
channels are disabled you must also select 8-bit resolution to allow the digital inputs to operate alone.

Applicability

All modes.
Any model with MSO channels fitted.

Arguments

handle, the device identifier returned by psospaOpenUnit().

port, identifies the digital port on the oscilloscope:

PICO_PORT0, channels D0–D7

PICO_PORT1, channels D8–D15

logicThresholdLevelVolts, the threshold voltage for the port in volts, used to distinguish the digital 0 and
1 states.

Returns

PICO_OK, the PicoScope is functioning correctly.

PICO_INVALID_DIGITAL_PORT, the requested digital port number is out of range.

PICO_INVALID_PARAMETER, the logicThresholdLevelVolts parameter is not valid.

PICO_NOT_SUPPORTED_BY_THIS_DEVICE, the PicoScope does not have digital ports.

API functions

85Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.45 psospaSetLedBrightness - set brightness of LEDs
PICO_STATUS psospaSetLedBrightness

(

int16_t handle,

uint8_t brightness

)

Sets the brightness of all configurable LEDs. The new brightness will only take effect the next time that LED is

applied by calling psospaRunBlock(), psospaRunStreaming(), psospaSetAuxIoMode() or

psospaSigGenApply() as appropriate.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

brightness, brightness of the LEDs. 0-100 inclusive (default 79).

Returns

PICO_OK

PICO_INVALID_PARAMETER (brightness is out of range)

API functions

86Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.46 psospaSetLedColours - set the colors of specified
LEDs

PICO_STATUS psospaSetLedColours

(

int16_t handle,

PICO_LED_COLOUR_PROPERTIES* colourProperties,

uint32_t nColourProperties

)

Sets the colors of the specified LEDs. The new color will only take effect the next time that LED is applied by

calling psospaRunBlock(), psospaRunStreaming(), psospaSetAuxIoMode() or

psospaSigGenApply() as appropriate.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

colourProperties, array of the LEDs to set and the colour to set them to. Duplicate LEDs will take the colour
of the last in the list.

nColourProperties, number of elements in the colourProperties array

Returns

PICO_OK

PICO_NULL_PARAMETER (the colourProperties pointer is null)

PICO_INVALID_PARAMETER (array length is invalid, one or more of the specified LEDs is not present on the
device, one or more of the hue or saturation are out of range)

3.46.1 PICO_LED_COLOUR_PROPERTIES structure

typedef struct tPicoLedColourProperties

{

PICO_LED_SELECT led_;

uint16_t hue_;

uint8_t saturation_;

} PICO_LED_COLOUR_PROPERTIES

This structure is used with psospaSetLedColours() to define the color for one LED using hue and saturation
(HSV) values for the color.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

led_, LED to set the colour of

hue_, hue of the LED, 0-359 inclusive

saturation_, saturation of the LED, 0-100 inclusive

API functions

87Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.46.2 PICO_LED_SELECT enumerated type

typedef enum enPicoLedSelect

{

PICO_LED_CHANNEL_A = 0x00000000,

PICO_LED_CHANNEL_B = 0x00000001,

PICO_LED_CHANNEL_C = 0x00000002,

PICO_LED_CHANNEL_D = 0x00000003,

PICO_LED_AWG = 0x00010000,

PICO_LED_AUX = 0x00020000

} PICO_LED_SELECT;

These values specify the LED channel within PICO_LED_COLOUR_PROPERTIES and

PICO_LED_STATE_PROPERTIES structures.

API functions

88Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.47 psospaSetLedStates - set the states of specified
LEDs

PICO_STATUS psospaSetLedStates

(

int16_t handle,

PICO_LED_STATE_PROPERTIES* stateProperties,

uint32_t nStateProperties

)

Sets the states of the specified LEDs.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

stateProperties: array of the LEDs to set and the state to set them to. Duplicate LEDs will take the state of
the last in the list.

nStateProperties: number of elements in the stateProperties array.

Returns

PICO_OK

PICO_NULL_PARAMETER (the stateProperties pointer is null)

PICO_INVALID_PARAMETER (array length is invalid, one or more of the specified LEDs is not present on the
device)

API functions

89Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.47.1 PICO_LED_STATE_PROPERTIES structure

typedef struct tPicoLedStateProperties

{

PICO_LED_SELECT led_

PICO_LED_STATE state_;

} PICO_LED_STATE_PROPERTIES

This structure is used with psospaSetLedStates() to define the state for one LED using PICO_LED_STATE
values below.

 The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

led_, LED to be configured

state_, new state of the LED:

PICO_LED_AUTO, LED is controlled automatically to match the enabled state of its associated connector.
This is the default behavior for all LEDs unless changed by the user.

PICO_LED_OFF, LED is set off

PICO_LED_ON, LED is set on

API functions

90Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.48 psospaSetNoOfCaptures - configure rapid block
mode

PICO_STATUS psospaSetNoOfCaptures

(

int16_t handle,

uint64_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block mode. If you do not call this
function before a run, the driver will capture only one waveform.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

nCaptures, the number of waveforms to capture in one run.

Returns

PICO_OK

PICO_INVALID_PARAMETER

API functions

91Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.49 psospaSetOutputEdgeDetect – change triggering
behavior

PICO_STATUS psospaSetOutputEdgeDetect

(

int16_t handle,

int16_t state

)

This function enables or disables edge detection on the output of the trigger function. In the default mode (edge
detection on) the trigger will only fire when there is a change in the state of the trigger function. For example, if
you set up trigger conditions representing “A OR B above threshold”, the scope will only trigger at the moment the
output of the logic function “A OR B” transitions from false to true. If either or both of the channels A or B are
constantly high, the scope will not trigger. With edge detection off, the scope will trigger immediately when set
running at any time that channel A or B is high.

To find out whether output edge detection is enabled, use psospaQueryOutputEdgeDetect().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

state, enable (1) or disable (0) the trigger function output edge detection.

Returns

PICO_OK

API functions

92Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.50 psospaSetPulseWidthDigitalPortProperties – set the
digital port pulse-width trigger settings

PICO_STATUS psospaSetPulseWidthDigitalPortProperties

(

int16_t handle,

PICO_CHANNEL port,

PICO_DIGITAL_CHANNEL_DIRECTIONS * directions,

int16_t nDirections

)

This function sets the individual digital channels' pulse-width trigger directions. Each digital channel's direction
consists of a channel name and a direction. If the channel is not included in the array of

PICO_DIGITAL_CHANNEL_DIRECTIONS, the driver assumes the digital channel's pulse-width trigger

direction is PICO_DIGITAL_DONT_CARE.

Applicability

All modes.
Any model with MSO channels fitted.

Arguments

handle, the device identifier returned by psospaOpenUnit().

port, identifies the digital port on the oscilloscope:

 PICO_PORT0, channels D0–D7

 PICO_PORT1, channels D8–D15

directions, a pointer to an array of PICO_DIGITAL_CHANNEL_DIRECTIONS structures describing the
requested properties. The array can contain a single element describing the properties of one channel, or a

number of elements describing several digital channels. If directions is NULL, all the digital channels' directions

for the given port are set to PICO_DIGITAL_DONT_CARE. A digital channel that is not included in the array is

also set to PICO_DIGITAL_DONT_CARE.

nDirections, the number of digital channel directions being passed to the driver.

Returns

PICO_OK

PICO_INVALID_DIGITAL_PORT, the requested digital port number is out of range.

PICO_INVALID_DIGITAL_CHANNEL, the digital channel is not a value within

the supported PICO_PORT_DIGITAL_CHANNEL range.

PICO_INVALID_DIGITAL_TRIGGER_DIRECTION, the digital trigger direction is not a valid trigger direction

within the supported PICO_DIGITAL_DIRECTION range.

API functions

93Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.51 psospaSetPulseWidthQualifierConditions - specify
how to combine channels

PICO_STATUS psospaSetPulseWidthQualifierConditions

(

int16_t handle,

PICO_CONDITION * conditions,

int16_t nConditions,

PICO_ACTION action

)

This function is used to set conditions for the pulse width qualifier, which is an optional input to the triggering
condition.

Multiple conditions can be combined as described in psospaSetTriggerChannelConditions() . When
the pulse width condition is met, the pulse width timer is reset and this signifies the start of a "pulse". The main
trigger condition signifies the end of the "pulse" and if the pulse width qualifier is enabled and the time between

these events meets the time condition set with psospaSetPulseWidthQualifierProperties(), the
scope will trigger.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

conditions, on entry, an array of structures specifiying the pulse width qualifier conditions. See

PICO_CONDITION.

nConditions, the number of structures in the conditions array.

action, how to combine the array of conditions with existing pulse width qualifier conditions. See

psospaSetTriggerChannelConditions() for the list of actions.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_INVALID_ACTION

API functions

94Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.52 psospaSetPulseWidthQualifierDirections - specify
threshold directions

PICO_STATUS psospaSetPulseWidthQualifierDirections

(

int16_t handle,

PICO_DIRECTION * directions,

int16_t nDirections

)

This function is used to set the trigger direction for each channel used in the pulse width time qualifier, which is
an optional input to the triggering condition.

This function works in the same way as psospaSetTriggerChannelDirections() . Each channel has
two trigger threshold comparators, so when using simple level triggers you can use one for the pulse width

direction (for example, RISING), and the other for the main trigger direction (for example, FALLING_LOWER)
signifying a positive pulse.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

directions, an array of structures specifying the pulse width qualifier directions. See PICO_DIRECTION.

nDirections, the number of structures in the directions array.

Returns

PICO_OK

PICO_NULL_PARAMETER

API functions

95Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.53 psospaSetPulseWidthQualifierProperties - specify
threshold logic

PICO_STATUS psospaSetPulseWidthQualifierProperties

(

int16_t handle,

uint32_t lower,

uint32_t upper,

PICO_PULSE_WIDTH_TYPE type

)

This function is used to set parameters for the pulse width time qualifier, which is an optional input to the
triggering condition.

The pulse width timer is reset when an event occurs matching the user's conditions set using

psospaSetPulseWidthQualifierConditions(), this represents the start of a "pulse". The qualifier is
true when the time since the most recent start-of-pulse event meets the conditions set by this function (for
example, less than 100 sample intervals ago).

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

lower, the lower pulse width threshold in sample intervals.

upper, the upper pulse width threshold in sample intervals

type, the pulse width qualifier type:

PICO_PW_TYPE_NONE = 0, no pulse width qualifier required

PICO_PW_TYPE_LESS_THAN = 1, pulse width must be less than threshold

PICO_PW_TYPE_GREATER_THAN = 2, pulse width must be greater than threshold

PICO_PW_TYPE_IN_RANGE = 3, pulse width must be between two thresholds

PICO_PW_TYPE_OUT_OF_RANGE = 4, pulse width must not be between two thresholds

Returns

PICO_OK

PICO_NULL_PARAMETER

API functions

96Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.54 psospaSetSimpleTrigger - set up basic triggering
PICO_STATUS psospaSetSimpleTrigger

(

int16_t handle,

int16_t enable,

PICO_CHANNEL source,

int16_t threshold,

PICO_THRESHOLD_DIRECTION direction,

uint64_t delay,

uint32_t autoTriggerMicroSeconds

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types and does not allow more than
one channel to have a trigger applied to it. Any previous pulse width qualifier is canceled.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

enable:disable (0) or enable (1) the trigger.

source: the channel on which to trigger. This can be any of the input channels listed under

psospaSetChannelOn().

threshold: the ADC count at which the trigger will fire.

direction: the direction in which the signal must move to cause a trigger. The following directions are

supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING.

delay: the time between the trigger occurring and the first post-trigger sample being taken, in sample intervals.

autoTriggerMicroSeconds: the time in microseconds for which the scope device will wait before
collecting data if no trigger event occurs. If this is set to zero, the scope device will wait indefinitely for a trigger.

Returns

PICO_OK

API functions

97Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.55 psospaSetTriggerChannelConditions - set triggering
logic

PICO_STATUS psospaSetTriggerChannelConditions

(

int16_t handle,

PICO_CONDITION * conditions,

int16_t nConditions,

PICO_ACTION action

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by one or more

PICO_CONDITION structures that are then ANDed together. By calling the function multiple times, additional
sets of trigger conditions can be defined which are then ORed together. This AND-OR logic allows you to create
any possible Boolean function of the scope's inputs.

If complex triggering is not required, use psospaSetSimpleTrigger().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

conditions, an array of PICO_CONDITION structures specifying the conditions that should be applied to
each channel. In the simplest case, the array consists of a single element. When there is more than one element,
the overall trigger condition is the logical AND of all the elements.

nConditions, the number of elements in the conditions array. If nConditions is zero then triggering is
switched off.

action, specifies how to apply the PICO_CONDITION array to any existing trigger conditions:

PICO_CLEAR_ALL, resets any previous conditions

PICO_ADD, adds this condition to any previous conditions

To apply only the conditions passed in the current call, specify both PICO_CLEAR_ALL | PICO_ADD together.

Returns

PICO_OK

PICO_NO_TRIGGER_CONDITIONS_SET, returned when no trigger conditions are set while the action is
PICO_ADD.

PICO_INVALID_ACTION, returned when the action contains invalid flags.

PICO_CLEAR_DATA_BUFFER_INVALID, returned when the action contains invalid buffer clear flags.

PICO_INVALID_CHANNEL, returned when a specified channel is invalid.

PICO_INVALID_TRIGGER_STATES, returned when a specified trigger state is invalid.

PICO_DUPLICATE_CONDITION_SOURCE, returned when a duplicate condition source is detected.

API functions

98Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.55.1 PICO_CONDITION structure

A structure of this type is passed to psospaSetTriggerChannelConditions() in the conditions
argument to specify the trigger conditions, and is defined as follows:

typedef struct tPicoCondition

{

PICO_CHANNEL source;

PICO_TRIGGER_STATE condition;

} PICO_CONDITION

Each structure specifies a condition for just one of the scope's inputs. The

psospaSetTriggerChannelConditions() function can AND together a number of these structures to
produce the final trigger condition.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

source, the signal that forms an input to the trigger condition:

PICO_CHANNEL_A, PICO_CHANNEL_B, PICO_CHANNEL_C, PICO_CHANNEL_D, one of the analog
input channels

PICO_PORT0, channels D0–D7, the first 8 digital inputs on MSO models

PICO_PORT1, channels D8–D15, the next 8 digital inputs on MSO models

PICO_TRIGGER_AUX, the AUX input

PICO_PULSE_WIDTH_SOURCE, the output of the pulse width qualifier

condition, the type of condition that should be applied to each channel. Use these constants:

PICO_CONDITION_DONT_CARE

PICO_CONDITION_TRUE

PICO_CONDITION_FALSE

The channels that are set to PICO_CONDITION_TRUE or PICO_CONDITION_FALSE must all meet their

conditions simultaneously to produce a trigger. Channels set to PICO_CONDITION_DONT_CARE are ignored.

API functions

99Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.56 psospaSetTriggerChannelDirections - set trigger
directions

PICO_STATUS psospaSetTriggerChannelDirections

(

int16_t handle,

PICO_DIRECTION * directions,

int16_t nDirections

)

This function sets the direction of the trigger for one or more channels.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

directions, an array of structures specifying the trigger direction for each channel. See PICO_DIRECTION.

nDirections, the number of structures in the directions array.

Returns

PICO_OK

PICO_INVALID_PARAMETER

API functions

100Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.56.1 PICO_DIRECTION structure

A structure of this type is passed to psospaSetTriggerChannelDirections() in the directions
argument to specify the trigger directions, and is defined as follows:

typedef struct tPicoDirection

{

PICO_CHANNEL channel;

PICO_THRESHOLD_DIRECTION direction;

PICO_THRESHOLD_MODE thresholdMode;

} PICO_DIRECTION

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channel, the channel whose direction you want to set.

direction, the direction required for the channel.

thresholdMode, the type of threshold to use. Each channel has two threshold comparators, designated as
"upper" and "lower". These can be used independently, for example to set different directions or thresholds for the

start and end of a time-qualified trigger using psospaSetPulseWidthQualifierDirections(), or used
both together to set up a window or runt trigger as described below:

PICO_THRESHOLD_DIRECTION values:

Constant Trigger type Threshold Polarity

PICO_ABOVE = 0 Gated Upper Above

PICO_ABOVE_LOWER = 5 Gated Lower Above

PICO_BELOW = 1 Gated Upper Below

PICO_BELOW_LOWER = 6 Gated Lower Below

PICO_RISING = 2 Threshold Upper Rising

PICO_RISING_LOWER = 7 Threshold Lower Rising

PICO_FALLING = 3 Threshold Upper Falling

PICO_FALLING_LOWER = 8 Threshold Lower Falling

PICO_RISING_OR_FALLING = 4 Threshold Lower (for rising edge)
Upper (for falling edge)

PICO_INSIDE = 0 Window-qualified Both Inside

PICO_OUTSIDE = 1 Window-qualified Both Outside

PICO_ENTER = 2 Window Both Entering

PICO_EXIT = 3 Window Both Leaving

PICO_ENTER_OR_EXIT = 4 Window Both Either entering or leaving

PICO_POSITIVE_RUNT = 9 Window-qualified Both Entering from below

PICO_NEGATIVE_RUNT Window-qualified Both Entering from above

PICO_NONE = 2 None None None

PICO_THRESHOLD_MODE values:

Constant Mode

PICO_LEVEL = 0 Active when input is above or below a single threshold

PICO_WINDOW = 1 Active when input is between two thresholds

API functions

101Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.57 psospaSetTriggerChannelProperties - set up
triggering

PICO_STATUS psospaSetTriggerChannelProperties

(

int16_t handle,

PICO_TRIGGER_CHANNEL_PROPERTIES * channelProperties

int16_t nChannelProperties

uint32_t autoTriggerMicroSeconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

channelProperties, a pointer to an array of TRIGGER_CHANNEL_PROPERTIES structures describing the
requested properties. The array can contain a single element describing the properties of one channel, or a

number of elements describing several channels. If NULL is passed, triggering is switched off.

nChannelProperties, the size of the channelProperties array. If zero, triggering is switched off.

autoTriggerMicroSeconds, the time in microseconds for which the scope device will wait before
collecting data if no trigger event occurs. If this is set to zero, the scope device will wait indefinitely for a trigger.

Returns

PICO_OK

PICO_NULL_CHANNEL_PROPERTIES, returned if channelProperties is nullptr and

nChannelProperties is greater than 0.

PICO_INVALID_CHANNEL, returned if a channel is not valid.

PICO_DUPLICATED_CHANNEL, returned if a channel appears more than once in channelProperties.

PICO_THRESHOLD_OUT_OF_RANGE, returned if the upper or lower threshold of a channel is out of the valid
range.

API functions

102Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.57.1 TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to psospaSetTriggerChannelProperties() in the

channelProperties argument to specify the trigger mechanism, and is defined as follows:

typedef struct tTriggerChannelProperties

{

int16_t thresholdUpper;

uint16_t thresholdUpperHysteresis;

int16_t thresholdLower;

uint16_t thresholdLowerHysteresis;

PICO_CHANNEL channel;

} PICO_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

There are two trigger thresholds called Upper and Lower. Each trigger type uses one or other of these

thresholds, or both, as specified in psospaSetTriggerChannelDirections(). Each trigger threshold has
its own hysteresis setting.

Elements

thresholdUpper, the upper threshold at which the trigger fires. It is scaled in 16-bit ADC counts at the
currently selected range for that channel. Use when "Upper" or "Both" is specified in

psospaSetTriggerChannelDirections().

hysteresisUpper, the distance by which the signal must fall below the upper threshold (for rising edge
triggers) or rise above the upper threshold (for falling edge triggers) in order to rearm the trigger for the next event.
It is scaled in 16-bit counts.

thresholdLower, lower threshold (see thresholdUpper). Use when "Lower" or "Both" is specified in

psospaSetTriggerChannelDirections().

hysteresisLower, lower threshold hysteresis (see hysteresisUpper).

channel, the channel to which the properties apply. This can be one of the input channels listed under

psospaSetChannelOn().

API functions

103Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.58 psospaSetTriggerDelay - set post-trigger delay
PICO_STATUS psospaSetTriggerDelay

(

int16_t handle,

uint64_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger event.

Applicability

Block and rapid block modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

delay, the time between the trigger event occurring and the first post-trigger sample being captured. For

example, if delay=100, the post-trigger samples will be counted starting 100 sample periods after the trigger
event. At a timebase of 5 GS/s, or 200 ps per sample, the delay would be 100 x 200 ps = 20 ns. If pre-trigger
samples are requested, these are immediately preceding the post-trigger samples, i.e. overlapping with the trigger
delay time.

Returns

PICO_OK

API functions

104Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.59 psospaSetTriggerDigitalPortProperties - set digital
port trigger directions

PICO_STATUS psospaSetTriggerDigitalPortProperties

(

int16_t handle,

PICO_CHANNEL port,

PICO_DIGITAL_CHANNEL_DIRECTIONS * directions,

int16_t nDirections

)

This function is used to enable or disable triggering and set its parameters.

Applicability

All modes
Any model with MSO channels fitted.

Arguments

handle, the device identifier returned by psospaOpenUnit().

port, identifies the digital port on the oscilloscope:

PICO_PORT0, channels D0–D7

PICO_PORT1, channels D8–D15

directions, an array of structures specifying the channel directions.

nDirections, the number of items in the directions array.

Returns

PICO_OK

PICO_INVALID_DIGITAL_PORT, indicates that the provided port is not valid.

PICO_INVALID_DIGITAL_CHANNEL, indicates that one of the provided digital channels is not in range.

PICO_INVALID_DIGITAL_TRIGGER_DIRECTION, indicates that one of the provided digital trigger directions
is not in range.

API functions

105Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.59.1 PICO_DIGITAL_CHANNEL_DIRECTIONS structure

A list of structures of this type is passed to psospaSetTriggerDigitalPortProperties() in the

directions argument to specify the digital channel trigger directions, and is defined as follows:

typedef struct tDigitalChannelDirections

{

PICO_PORT_DIGITAL_CHANNEL channel;

PICO_DIGITAL_DIRECTION direction;

} PICO_DIGITAL_CHANNEL_DIRECTIONS

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channel, identifies the digital channel within the selected port from PICO_PORT_DIGITAL_CHANNEL0 up to

PICO_PORT_DIGITAL_CHANNEL7. For example, if you have selected PICO_PORT_1 then

PICO_PORT_DIGITAL_CHANNEL0 represents D8 and PICO_PORT_DIGITAL_CHANNEL7 represents D15.

direction, the trigger direction from the following list:

PICO_DIGITAL_DONT_CARE: channel has no effect on trigger

PICO_DIGITAL_DIRECTION_LOW: channel must be low to trigger

PICO_DIGITAL_DIRECTION_HIGH: channel must be high to trigger

PICO_DIGITAL_DIRECTION_RISING: channel must transition from low to high to trigger

PICO_DIGITAL_DIRECTION_FALLING: channel must transition from high to low to trigger

PICO_DIGITAL_DIRECTION_RISING_OR_FALLING: channel must transition (in either direction) to
trigger

API functions

106Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.60 psospaSetTriggerHoldoffCounterBySamples - set
the trigger holdoff time in sample intervals

PICO_STATUS psospaSetTriggerHoldoffCounterBySamples

(

int16_t handle,

uint64_t holdoffSamples,

)

This function sets the trigger holdoff time in sample intervals. Trigger holdoff allows you to set a period when the
scope won't look for further trigger events after each triggered acquisition.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

holdoffSamples, the time in sample intervals to disable looking for further triggers after the trigger event of
each acquisition.

Returns

PICO_OK

PICO_ARGUMENT_OUT_OF_RANGE

API functions

107Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.61 psospaSigGenApply - set the signal generator
running

PICO_STATUS psospaSigGenApply

(

int16_t handle,

int16_t sigGenEnabled,

int16_t sweepEnabled,

int16_t triggerEnabled,

double * frequency,

double * stopFrequency,

double * frequencyIncrement,

double * dwellTime

)

This function sets the signal generator running using parameters previously configured by the other
psospaSigGen... functions.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

sigGenEnabled, switches the signal generator on (1) or off (0).

sweepEnabled, switches sweep mode on (1) or off (0).

triggerEnabled, switches triggering of the signal generator on (1) or off (0).

frequency, on exit, the actual achieved signal generator frequency (or start frequency in sweep mode).

stopFrequency, on exit, the actual achieved signal generator frequency at the end of the sweep.

frequencyIncrement, on exit, the actual achieved frequency step size in sweep mode.

dwellTime, on exit, the actual achieved time in seconds between frequency steps in sweep mode.

Returns

PICO_OK

PICO_WARNING_AUX_OUTPUT_CONFLICT, indicates a conflict with the auxiliary output.

PICO_BUSY, indicates that the device is busy.

API functions

108Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.62 psospaSigGenFrequency - set output frequency
PICO_STATUS psospaSigGenFrequency

(

int16_t handle,

double frequencyHz

)

This function sets the frequency of the signal generator.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

frequencyHz, the desired frequency in hertz.

Returns

PICO_OK

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE

API functions

109Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.63 psospaSigGenFrequencyLimits - get signal
generator limit values

PICO_STATUS psospaSigGenFrequencyLimits

(

int16_t handle,

PICO_WAVE_TYPE waveType,

uint64_t * numSamples,

double * minFrequencyOut,

double * maxFrequencyOut,

double * minFrequencyStepOut,

double * maxFrequencyStepOut,

double * minDwellTimeOut,

double * maxDwellTimeOut

)

This function queries the maximum and minimum values for the signal generator in fixed-frequency or sweep
mode.

Applicability

All models

Arguments

handle, the device identifier returned by psospaOpenUnit().

waveType, the waveform that you intend to use.

numSamples, for arbitrary waveforms only, the number of samples in the AWG buffer.

minFrequencyOut, on exit, the lowest possible output frequency that can be achieved.

maxFrequencyOut, on exit, the highest possible output frequency that can be achieved.

minFrequencyStepOut, on exit, the smallest possible frequency step for frequency sweep mode.

maxFrequencyStepOut, on exit, the largest possible frequency step for frequency sweep mode.

minDwellTimeOut, on exit, the smallest possible dwell time for frequency sweep mode.

maxDwellTimeOut, on exit, the largest possible dwell time for frequency sweep mode.

Returns

PICO_OK

PICO_SIGGEN_WAVETYPE_NOT_SUPPORTED, returned if the waveType is not supported.

PICO_SIGGEN_NULL_PARAMETER, returned if numSamples is nullptr when waveType is

PICO_ARBITRARY.

PICO_SIG_GEN_PARAM, returned if numSamples is 0 or greater than the maximum buffer size when

waveType is PICO_ARBITRARY.

API functions

110Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.64 psospaSigGenFrequencySweep - set signal
generator to frequency sweep mode

PICO_STATUS psospaSigGenFrequencySweep

(

int16_t handle,

double stopFrequencyHz,

double frequencyIncrement,

double dwellTimeSeconds,

PICO_SWEEP_TYPE sweepType

)

This function sets frequency sweep parameters for the signal generator. It assumes that you have previously

called psospaSigGenFrequency() to set the start frequency.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

Signal generator.

Arguments

handle, the device identifier returned by psospaOpenUnit().

stopFrequencyHz, the frequency in hertz at which the sweep should stop.

frequencyIncrement, the amount by which the frequency should change, in hertz, at each step of the
sweep.

dwellTimeSeconds, the time for which the generator should wait between frequency steps.

sweepType, the direction of the sweep, from the following list:

PICO_UP = 0, to sweep from startFrequency up to stopFrequency and then repeat.

PICO_DOWN = 1, to sweep from startFrequency down to stopFrequency and then repeat.

PICO_UPDOWN = 2, to sweep from startFrequency up to stopFrequency , then down to

startFrequency, and then repeat.

PICO_DOWNUP = 3, to sweep from startFrequency down to stopFrequency , then up to

startFrequency, and then repeat.

Returns

PICO_OK

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE, returned if stopFrequencyHz or frequencyIncrement
is out of the valid range.

PICO_SIGGEN_SWEEPTYPE_INVALID, returned if sweepType is not in the list of supported sweep types.

PICO_SIGGEN_INVALID_SWEEP_PARAMETERS, returned if the dwell count calculated from dwell time is
outside the valid range.

API functions

111Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.65 psospaSigGenLimits - get signal generator
parameters

PICO_STATUS psospaSigGenLimits

(

int16_t handle,

PICO_SIGGEN_PARAMETER parameter,

double * minimumPermissibleValue,

double * maximumPermissibleValue,

double * step

)

This function queries the maximum and minimum allowable values for a given signal generator parameter.

Applicability

All models

Arguments

handle, the device identifier returned by psospaOpenUnit().

parameter, one of the following enumerated values:

PICO_SIGGEN_PARAM_OUTPUT_VOLTS = 0, the signal generator output voltage

PICO_SIGGEN_PARAM_SAMPLE = 1, the value of a sample in the arbitrary waveform buffer

PICO_SIGGEN_PARAM_BUFFER_LENGTH = 2, the length of the arbitrary waveform buffer in samples

minimumPermissibleValue, on exit, the minimum value

maximumPermissibleValue, on exit, the maximum value

step, on exit, the smallest increment in the parameter that will cause a change in the signal generator output.

Returns

PICO_OK

PICO_NULL_PARAMETER, returned if all pointers are nullptr.

PICO_SIG_GEN_PARAM, indicates that an invalid PICO_SIGGEN_PARAMETER was passed to the function.

API functions

112Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.66 psospaSigGenPause - stop the signal generator
PICO_STATUS psospaSigGenPause

(

int16_t handle

)

This function stops the signal generator. The output will remain at a constant voltage until the generator is

restarted with psospaSigGenRestart().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

Returns

PICO_OK

PICO_SIGGEN_SETTINGS_CHANGED_CALL_APPLY

API functions

113Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.67 psospaSigGenPhase - set signal generator using
delta-phase value instead of a frequency

PICO_STATUS psospaSigGenPhase

(

int16_t handle,

uint64_t deltaPhase

)

This function sets the signal generator output frequency (or the starting frequency, in the case of a frequency
sweep) using a delta-phase value instead of a frequency. See Calculating deltaPhase for more information on
how to calculate this value.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

deltaPhase, the desired delta phase.

Returns

PICO_OK

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE

3.67.1 Calculating deltaPhase

The signal generator uses direct digital synthesis (DDS) with a 48-bit phase accumulator that indicates the
present location in the waveform. The top bits of the phase accumulator are used as an index into a buffer
containing the arbitrary waveform. The remaining bits act as the fractional part of the index, enabling high-
resolution control of output frequency and allowing the generation of lower frequencies.

The signal generator steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize-1 to the phase accumulator every dacPeriod (= 1/dacFrequency). The generator produces
a waveform at a frequency that can be calculated as follows:

where:

outputFrequency = repetition rate of the complete arbitrary waveform
dacFrequency = update rate of AWG DAC (see table below)
deltaPhase = delta-phase value supplied to this function
phaseAccumulatorSize = width in bits of phase accumulator (see table below)
bufferAddressWidth = width in bits of AWG buffer address (see table below)
arbitraryWaveformSize = length in samples of the user-defined waveform

API functions

114Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

Parameter Value

dacFrequency 200 MHz

dacPeriod 1/dacFrequency. 5 ns.

phaseAccumulatorSize 48

bufferAddressWidth 15

API functions

115Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.68 psospaSigGenPhaseSweep - set signal generator to
sweep using delta-phase values instead of
frequency values

PICO_STATUS psospaSigGenPhaseSweep

(

int16_t handle,

uint64_t stopDeltaPhase,

uint64_t deltaPhaseIncrement,

uint64_t dwellCount,

PICO_SWEEP_TYPE sweepType

)

This function sets frequency sweep parameters for the signal generator using delta-phase values instead of

frequency values. It assumes that you have previously called psospaSigGenPhase() to set the starting delta-
phase.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

stopDeltaPhase, the delta-phase at which the sweep should stop. You must set the starting delta-phase,

deltaPhase, beforehand by calling psospaSigGenPhase().

deltaPhaseIncrement, the amount by which the delta-phase should change at each step of the sweep.

dwellCount, the number of samples for which the generator should wait between sweep steps.

sweepType, the direction of the sweep, from the following list:

PICO_UP = 0, to sweep from deltaPhase up to stopDeltaPhase and then repeat.

PICO_DOWN = 1, to sweep from deltaPhase down to stopDeltaPhase and then repeat.

PICO_UPDOWN = 2, to sweep from deltaPhase up to stopDeltaPhase , then down to deltaPhase,
and then repeat.

PICO_DOWNUP = 3, to sweep from deltaPhase down to stopDeltaPhase , then up to deltaPhase,
and then repeat.

Returns

PICO_OK

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE

PICO_SIGGEN_INVALID_SWEEP_PARAMETERS

PICO_SIGGEN_SWEEPTYPE_INVALID

API functions

116Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.69 psospaSigGenRange - set signal generator output
voltages

PICO_STATUS psospaSigGenRange

(

int16_t handle,

double peakToPeakVolts,

double offsetVolts

)

This function sets the amplitude (peak to peak measurement) and offset (voltage corresponding to data value of
zero) of the signal generator.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

peakToPeakVolts, the signal generator's peak-to-peak output range in volts.

offsetVolts, the signal generator's output offset in volts.

The total output voltage accounting for both peak-to-peak and offset must fall within the signal generator's output

voltage range described in the PicoScope 3000E data sheet or returned by psospaSigGenLimits().

Returns

PICO_OK

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE, if peakToPeak and offset are within their individual ranges but
the combination is out of range.

https://www.picotech.com/download/datasheets/picoscope-3000e-series-data-sheet.pdf

API functions

117Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.70 psospaSigGenRestart - continue after pause
PICO_STATUS psospaSigGenRestart

(

int16_t handle

)

This function restarts the signal generator after it was paused with psospaSigGenPause().

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

Returns

PICO_OK

PICO_SIGGEN_SETTINGS_CHANGED_CALL_APPLY, the signal generator has been partially reconfigured
and the new settings must be applied before it can be paused or restarted.

API functions

118Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.71 psospaSigGenSoftwareTriggerControl - set software
triggering

PICO_STATUS psospaSigGenSoftwareTriggerControl

(

int16_t handle,

PICO_SIGGEN_TRIG_TYPE triggerState

)

This function causes the signal generator trigger to fire, if a software trigger has been set up using

psospaSigGenTrigger() and the signal generator is waiting for a trigger event.

If the trigger type set using psospaSigGenTrigger() is PICO_SIGGEN_RISING or

PICO_SIGGEN_FALLING, calling this function will trigger the defined number of waveform cycles or sweeps

and the triggerState parameter is not used.

If the trigger type set using psospaSigGenTrigger() is PICO_SIGGEN_GATE_HIGH or

PICO_SIGGEN_GATE_LOW, calling this function will start the signal generator running when triggerState =

PICO_SIGGEN_GATE_HIGH , or pause it when any other value.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

triggerState, when the trigger type is set to gating, runs the signal generator if triggerState =

PICO_SIGGEN_GATE_HIGH or pauses it otherwise.

Returns

PICO_OK

PICO_SIGGEN_TRIGGER_SOURCE

API functions

119Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.72 psospaSigGenTrigger - choose the trigger event
PICO_STATUS psospaSigGenTrigger

(

int16_t handle,

PICO_SIGGEN_TRIG_TYPE triggerType,

PICO_SIGGEN_TRIG_SOURCE triggerSource,

uint64_t cycles,

uint64_t autoTriggerPicoSeconds

)

This function sets up triggering for the signal generator. This feature causes the signal generator to start and
stop under the control of a signal or event.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

triggerType, whether an edge trigger (starts on a specified edge) or a gated trigger (runs while trigger is in
the specified state):

PICO_SIGGEN_RISING = 0,

PICO_SIGGEN_FALLING = 1,

PICO_SIGGEN_GATE_HIGH = 2,

PICO_SIGGEN_GATE_LOW = 3

triggerSource, the signal used as a trigger:

PICO_SIGGEN_NONE = 0,

PICO_SIGGEN_SCOPE_TRIG = 1,

PICO_SIGGEN_AUX_IN = 2,

PICO_SIGGEN_SOFT_TRIG = 4,

cycles, the number of waveform cycles to generate after the trigger edge or after entering the active trigger
state. Set to zero to make the signal generator run indefinitely.

autoTriggerPicoSeconds, reserved for future use, set to zero.

Returns

PICO_OK

PICO_SIGGEN_TRIGGERTYPE_NOT_SUPPORTED, this indicates that the provided trigger type is not
supported.

PICO_SIGGEN_TRIGGERSOURCE_NOT_SUPPORTED, indicates that the provided trigger source is not
supported.

PICO_SIGGEN_CYCLES_OUT_OF_RANGE, this indicates that the provided cycles value exceeds the maximum
allowed value.

API functions

120Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.73 psospaSigGenWaveform - choose signal generator
waveform

PICO_STATUS psospaSigGenWaveform

(

int16_t handle,

PICO_WAVE_TYPE waveType,

int16_t * buffer,

uint64_t bufferLength

)

This function specifies which waveform the signal generator will produce. After configuring all required signal

generator settings, call psospaSigGenApply() to apply them to the device.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

waveType, specifies the type of waveform to generate, for example PICO_SINE

buffer, an array of sample values to be used by the arbitrary waveform generator (AWG). Used only when

waveType = PICO_ARBITRARY. Each sample value should be in the range (–32767 to 32767) as returned by

psospaSigGenLimits(), representing the full output voltage span of the waveform generator.

bufferLength, the number of samples in the buffer array. Used only when waveType =

PICO_ARBITRARY.

Returns

PICO_OK

PICO_SIGGEN_WAVETYPE_NOT_SUPPORTED, indicates that the provided wave type is not supported.

PICO_SIGGEN_BUFFER_NOT_SUPPLIED, indicates that the buffer is nullptr when the wave type is

PICO_ARBITRARY.

PICO_SIGGEN_EMPTY_BUFFER_SUPPLIED, indicates that the buffer length is zero when the wave type is

PICO_ARBITRARY.

PICO_SIGGEN_TOO_MANY_SAMPLES, indicates that the buffer length exceeds the maximum allowed
samples.

API functions

121Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.74 psospaSigGenWaveformDutyCycle - set duty cycle
PICO_STATUS psospaSigGenWaveformDutyCycle

(

int16_t handle,

double dutyCyclePercent

)

This function sets the duty cycle of the signal generator waveform in square wave and triangle wave modes.

The duty cycle of a pulse waveform is defined as the time spent in the high state divided by the period. The
default duty cycle is 50% (representing a square wave with equal high and low times, or a triangle wave with equal
rise and fall times) and it is only necessary to call this function if a different duty cycle is required.

After configuring all required signal generator settings, call psospaSigGenApply() to apply them to the
device.

Applicability

Square wave and triangle wave outputs only.

Arguments

handle, the device identifier returned by psospaOpenUnit().

dutyCyclePercent, the percentage duty cycle of the waveform from 0.0 to 100.0.

Returns

PICO_OK

PICO_SIGGEN_DUTYCYCLE_OUT_OF_RANGE, indicates that the provided duty cycle percentage is out of the

valid range (0.0 to 100.0)

API functions

122Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.75 psospaStartFirmwareUpdate - update the device
firmware

PICO_STATUS psospaStartFirmwareUpdate

(

int16_t handle,

PicoUpdateFirmwareProgress progress

)

This function updates the device's firmware (the embedded instructions stored in nonvolatile memory in the
device). Updates may fix bugs or add new features.

The function applies any firmware update to the device which is included in the current driver. It does not check
online for updates or require internet access.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

progress, a user-supplied function that receives callbacks when the status of the update changes. See

PicoUpdateFirmwareProgress(). May be NULL if not required.

Returns

PICO_FIRMWARE_UP_TO_DATE, the firmware update was performed successfully or firmware was already
up to date

API functions

123Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.76 psospaStop - stop sampling
PICO_STATUS psospaStop

(

int16_t handle

)

This function stops the scope device from sampling data.

When running the device in streaming mode, always call this function after the end of a capture to ensure that the
scope is ready for the next capture.

When running the device in block mode or rapid block mode, you can call this function to interrupt data capture.

If this function is called before a trigger event occurs, the oscilloscope may not contain valid data.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

Returns

PICO_OK

API functions

124Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.77 psospaStopUsingGetValuesOverlapped -
complements psospaGetValuesOverlapped

PICO_STATUS psospaStopUsingGetValuesOverlapped

(

int16_t handle

)

This function stops deferred data-collection that was started by calling psospaGetValuesOverlapped().

Applicability

Block and rapid block mode

Arguments

handle, the device identifier returned by psospaOpenUnit().

Returns

PICO_OK

API functions

125Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

3.78 psospaTriggerWithinPreTriggerSamples - switch
feature on or off

PICO_STATUS psospaTriggerWithinPreTriggerSamples

(

int16_t handle,

PICO_TRIGGER_WITHIN_PRE_TRIGGER state

)

When this feature is enabled, the scope will trigger if a trigger event is detected during the pre-trigger samples.
Effectively, the user-specified pre-trigger count becomes a maximum pre-trigger count and the actual number of
pre-trigger samples returned will be between zero and that number depending on when the trigger occurs. You

can find the actual trigger point by calling psospaGetTriggerInfo() after the capture has completed.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

state, 0 to enable, 1 to disable.

Returns

PICO_OK

PICO_INVALID_TRIGGER_WITHIN_PRE_TRIGGER_STATE, indicates that the provided state is invalid.

Callbacks

126Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

4 Callbacks

4.1 psospaBlockReady - indicate when block-mode data
ready

typedef void (*psospaBlockReady)

(

int16_t handle,

PICO_STATUS status,

PICO_POINTER pParameter

)

This callback function is part of your application. You register it with the PicoScope 3000E Series driver using

psospaRunBlock() and the driver calls it back when block-mode data is ready. You can then download the

data using the psospaGetValues() function.

Applicability

Block mode only

Arguments

handle, the device identifier returned by psospaOpenUnit().

status, indicates whether an error occurred during collection of the data.

pParameter, a pointer passed from psospaRunBlock(). Your callback function can write to this location to
send any data, such as a status flag, back to your application.

Returns

nothing

Callbacks

127Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

4.2 psospaDataReady - indicate when post-collection
data is ready

typedef void(*psospaDataReady)

(

int16_t handle,

PICO_STATUS status,

uint64_t noOfSamples,

int16_t overflow,

PICO_POINTER pParameter

)

This is a callback function that you write to collect data from the driver. You supply a pointer to the function when

you call psospaGetValuesAsync() and the driver calls your function back when the data is ready.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

status, a PICO_STATUS code returned by the driver.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicates whether an overvoltage has occurred and on which channels. It is a bit
field with bit 0 representing Channel A.

pParameter, a void pointer passed from psospaGetValuesAsync(). The callback function can write to
this location to send any data, such as a status flag, back to the application. The data type is defined by the
application programmer.

Returns

nothing

Callbacks

128Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

4.3 PicoUpdateFirmwareProgress - get status of
firmware update

typedef void (* PicoUpdateFirmwareProgress)

(

int16_t handle,

uint16_t progress

)

You should write this callback function and register it with the driver using psospaStartFirmwareUpdate().
The driver calls it back when the firmware update status changes.

Applicability

All modes

Arguments

handle, the device identifier returned by psospaOpenUnit().

progress, a progress indicator.

Returns

nothing

Reference

129Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

5 Reference

5.1 Numeric data types
Here is a list of the numeric data types used in the psospa API:

Type Bits Signed or unsigned?

int8_t 8 signed

uint8_t 8 unsigned

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754)

double 64 signed (IEEE 754)

int64_t 64 signed

uint64_t 64 unsigned

5.2 Enumerated types and constants
The enumerated types and constants used in the PicoScope 3000E Series API driver are defined in header files
included in the SDK. We recommend that you refer to these constants by name unless your programming
language allows only numerical values.

Reference

130Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.psospa-3

PicoScope 3000E Ser ies psospa API Programmer 's Guide

5.3 Driver status codes
Every function in the psospa driver returns a driver status code from the list of PICO_STATUS values in the file

PicoStatus.h, which is included in the Pico Technology SDK. Not all codes in PicoStatus.h apply to the
PicoScope 3000E Series.

In addition to the function-specific error codes described in this guide, functions may also return a generic error
code such as one of the following:

PICO_INVALID_HANDLE, the handle passed does not refer to an open PicoScope unit.

PICO_MEMORY_FAIL, could not allocate sufficient memory on the host PC to complete the operation.

PICO_NOT_RESPONDING, the PicoScope did not respond to a command, for example if it has been
disconnected.

PICO_INTERNAL_ERROR, an unexpected error has occurred in the driver. Contact Pico technical support for
assistance.

PICO_DRIVER_FUNCTION, a driver function has already been called and not yet finished. Only one call to the
driver can be made at any one time.

5.4 Glossary
Callback. A mechanism that the PicoScope driver uses to communicate asynchronously with your application. At
design time, you add a function (a callback function) to your application to deal with captured data. At run time,
when you request captured data from the driver, you also pass it a pointer to your function. The driver then returns
control to your application, allowing it to perform other tasks until the data is ready. When this happens, the driver
calls your function in a new thread to signal that the data is ready. It is then up to your function to communicate
this fact to the rest of your application.

Driver. A program that controls a piece of hardware. The driver for the PicoScope 3000E Series oscilloscopes is

supplied in the form of 64-bit Windows DLLs called psospa.dll and macOS and Linux libraries called

libpsospa. These are used by your application to control the oscilloscope.

PicoScope 3000E Series. A range of PC Oscilloscopes from Pico Technology, with bandwidths up to 500 MHz,
maximum sampling rate of up to 5 GS/s, sampling resolutions of 8/10 bits and a capture memory size of 2 GS.

USB 2.0. The second generation of USB (universal serial bus) interface. The port supports a data transfer rate of
up to 480 megabits per second.

USB 3.0. A USB 3.0 port uses signaling speeds of up to 5 gigabits per second and is backwards-compatible with
USB 2.0.

https://www.picotech.com/tech-support

UK headquar ters : US regional of f ice:

Pico Technology
320 N Glenwood Blvd
Tyler
TX 75702
USA

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Tel: +44 (0) 1480 396 395

sales@picotech.com
support@picotech.com

Tel: +1 800 591 2796

sales@picotech.com
support@picotech.com

Asia-Pacif ic regional of f ice: Germany regional of f ice and EU Author ised Representative:

Pico Technology GmbH
Emmericher Str. 60
47533 Kleve
Germany

Tel: +49 (0) 5131 907 62 90

info.de@picotech.com

pico.asia-pacific@picotech.com

www.picotech.com

psospa-3

Copyright © 2024–2025 Pico Technology Ltd. All rights reserved.

	Introduction
	Software license conditions
	Trademarks

	Programming overview
	System requirements
	Driver
	Voltage ranges
	MSO digital data
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	Combining several oscilloscopes

	API functions
	psospaCheckForUpdate - check if firmware update is available
	psospaCloseUnit - close a scope device
	psospaEnumerateUnits - get a list of unopened units
	psospaGetAdcLimits - get min and max sample values
	psospaGetAnalogueOffsetLimits - get analog offset information
	psospaGetDeviceResolution – retrieve the device resolution
	psospaGetMaximumAvailableMemory - find max memory at a given resolution
	psospaGetMinimumTimebaseStateless - find fastest available timebase
	psospaGetNoOfCaptures - query how many captures made
	psospaGetNoOfProcessedCaptures - query how many captures processed
	psospaGetScalingValues - get scaling factors used to adjust the gain and offset of oscilloscope data
	PICO_SCALING_FACTORS_FOR_RANGE_TYPES_VALUES structure

	psospaGetStreamingLatestValues - read streaming data
	PICO_STREAMING_DATA_INFO
	PICO_STREAMING_DATA_TRIGGER_INFO

	psospaGetTimebase - get available timebases
	psospaGetTriggerInfo - get trigger timing information
	PICO_TRIGGER_INFO - structure
	Time stamping

	psospaGetTriggerTimeOffset - get timing corrections
	psospaGetUnitInfo - get information about device
	psospaGetValues - get data after a capture has completed
	Downsampling modes

	psospaGetValuesAsync - read data without blocking
	psospaGetValuesBulk - read multiple segments
	psospaGetValuesBulkAsync - read multiple segments without blocking
	psospaGetValuesOverlapped - make a deferred request for data before running the scope
	Using GetValuesOverlapped()

	psospaGetValuesTriggerTimeOffsetBulk - get trigger time offsets for multiple segments
	psospaGetVariantDetails - get specification details in JSON format
	PICO_TEXT_FORMAT textFormat

	psospaIsReady - get status of block capture
	psospaMemorySegments - set number of memory segments
	psospaMemorySegmentsBySamples - set size of memory segments
	psospaNearestSampleIntervalStateless - get nearest sampling interval
	psospaNoOfStreamingValues - get number of captured samples
	psospaOpenUnit - open a scope device
	PICO_USB_POWER_DETAILS
	PICO_USB_POWER_DELIVERY

	psospaPingUnit - check if device is still connected
	psospaQueryMaxSegmentsBySamples - get number of segments
	psospaQueryOutputEdgeDetect – check if output edge detection is enabled
	psospaResetChannelsAndReportAllChannelsOvervoltageTripStatus - reset 50 Ω input protection
	psospaReportAllChannelsOvervoltageTripStatus- check if 50 Ω input protection has tripped
	PICO_CHANNEL_OVERVOLTAGE_TRIPPED structure

	psospaRunBlock - start block mode capture
	psospaRunStreaming - start streaming mode capture
	psospaSetAuxIoMode - configure the AUX IO connector
	psospaSetChannelOff - disable one channel
	psospaSetChannelOn - enable and set options for one channel
	psospaSetDataBuffer - provide location of data buffer
	psospaSetDataBuffers - provide locations of both data buffers
	psospaSetDeviceResolution – set the hardware resolution
	PICO_DEVICE_RESOLUTION enumerated type

	psospaSetDigitalPortOff – switch off a digital port
	psospaSetDigitalPortOn – set up and enable a digital port
	psospaSetLedBrightness - set brightness of LEDs
	psospaSetLedColours - set the colors of specified LEDs
	PICO_LED_COLOUR_PROPERTIES structure
	PICO_LED_SELECT enumerated type

	psospaSetLedStates - set the states of specified LEDs
	PICO_LED_STATE_PROPERTIES structure

	psospaSetNoOfCaptures - configure rapid block mode
	psospaSetOutputEdgeDetect – change triggering behavior
	psospaSetPulseWidthDigitalPortProperties – set the digital port pulse-width trigger settings
	psospaSetPulseWidthQualifierConditions - specify how to combine channels
	psospaSetPulseWidthQualifierDirections - specify threshold directions
	psospaSetPulseWidthQualifierProperties - specify threshold logic
	psospaSetSimpleTrigger - set up basic triggering
	psospaSetTriggerChannelConditions - set triggering logic
	PICO_CONDITION structure

	psospaSetTriggerChannelDirections - set trigger directions
	PICO_DIRECTION structure

	psospaSetTriggerChannelProperties - set up triggering
	TRIGGER_CHANNEL_PROPERTIES structure

	psospaSetTriggerDelay - set post-trigger delay
	psospaSetTriggerDigitalPortProperties - set digital port trigger directions
	PICO_DIGITAL_CHANNEL_DIRECTIONS structure

	psospaSetTriggerHoldoffCounterBySamples - set the trigger holdoff time in sample intervals
	psospaSigGenApply - set the signal generator running
	psospaSigGenFrequency - set output frequency
	psospaSigGenFrequencyLimits - get signal generator limit values
	psospaSigGenFrequencySweep - set signal generator to frequency sweep mode
	psospaSigGenLimits - get signal generator parameters
	psospaSigGenPause - stop the signal generator
	psospaSigGenPhase - set signal generator using delta-phase value instead of a frequency
	Calculating deltaPhase

	psospaSigGenPhaseSweep - set signal generator to sweep using delta-phase values instead of frequency values
	psospaSigGenRange - set signal generator output voltages
	psospaSigGenRestart - continue after pause
	psospaSigGenSoftwareTriggerControl - set software triggering
	psospaSigGenTrigger - choose the trigger event
	psospaSigGenWaveform - choose signal generator waveform
	psospaSigGenWaveformDutyCycle - set duty cycle
	psospaStartFirmwareUpdate - update the device firmware
	psospaStop - stop sampling
	psospaStopUsingGetValuesOverlapped - complements psospaGetValuesOverlapped
	psospaTriggerWithinPreTriggerSamples - switch feature on or off

	Callbacks
	psospaBlockReady - indicate when block-mode data ready
	psospaDataReady - indicate when post-collection data is ready
	PicoUpdateFirmwareProgress - get status of firmware update

	Reference
	Numeric data types
	Enumerated types and constants
	Driver status codes
	Glossary

