

PNT Test Precision Made Accessible

spirent.com/pntxe

Table of Contents

PNT Xe: PNT Test Precision Made Accessible	4
PNT Xe Signal Generator	4
SimTEST Control Software	5
Single Channel Utility (SCU)	6
Scenario Assistant	6
GPS Authorised Testing	7
Detailed Performance Specifications	8
GNSS Constellations and Supported Signals	8
System Performance	10
Extensions and Options	11
SimHIL	
PNT Automation	11
STANDPOINT	11
External Interference Simulator GSS7765	12
Connectivity	12
Physical and Environmental Properties	13
Accreditation and Compliance	13
System Calibration	13
Related Brochures, Data Sheets and Specifications	14

List of Tables

Table 1 GNSS Signals Supported	8
Table 2 Performance Levels for PNT Xe	
Table 3 SimHIL Options	11
Table 4 Signal Generator Connectivity	12
Table 5 Internal Controller Connectivity	12
Table 6 Physical and Environmental Properties	
Table 7 Safety and EMC Compliance	
Table 8 Related Product References	14
List of Figures	
Figure 1: PNT Xe Simulation System	4
Figure 2 SimTEST main GUI	5
Figure 3 SimROUTE™ Google Maps® User Motion Trajectory generation tool	5
Figure 4 Single Channel Utility main GUI	
Figure 5 Scenario Assistant	6

PNT Xe: PNT Test Precision Made Accessible

PNT Xe brings Spirent's trusted GNSS simulation performance to a wider range of users and applications, offering a cost-effective, compact solution without compromising on signal fidelity or reliability.

Built on Spirent's proven signal generation architecture, PNT Xe supports multi-constellation, dual-frequency GNSS testing with the signal quality, stability, and repeatability needed for confident validation in real-world production workflows.

With its rack-mountable, lab- and field-ready form factor, PNT Xe is engineered for flexible deployment—supporting everything from fundamental system verification to more scalable operational testing.

Figure 1: PNT Xe Simulation System

PNT Xe Signal Generator

The PNT Xe consists of a single 2U rack-mountable unit with internal controller running the operating software. It supports one RF output and up to two generic SDR radio cards. All signals are combined and simultaneously routed to the front-panel primary RF output and rear-panel high-level output.

Each SDR radio card can be configured to generate up to 64 channels of any signal type within one of four frequency bands. Multiple constellations can be generated within a single SDR radio card, as long as they operate within the same frequency band.

PNT Xe also supports in-field upgrades, offering a clear path for future scalability, including:

- · In-field hardware upgrades for additional RF SDR radio card
- Software feature keys to enable additional GNSS constellations and signal capabilities

SimTEST Control Software

SimTEST is ideal for essential testing. It provides the capability needed to perform fundamental verification tests. Spirent's precise constellation and navigation modelling is built-in, delivering maximum ease of use. Simply set up a few key parameters and press 'run'.

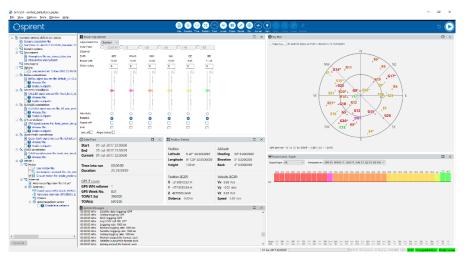


Figure 2 SimTEST main GUI

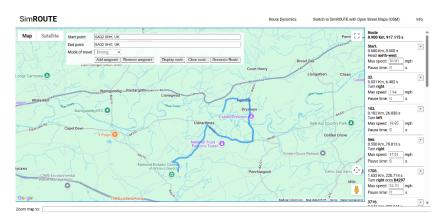


Figure 3 SimROUTE™ Google Maps® User Motion Trajectory generation tool

Key SimTEST™ features include:

- Edit and save time and date
- Enable/disable atmospheric modelling
- Enable/disable multipath
- · Interactive power control of each individual constellation
- Load real constellation almanacs
- Choose Static position, simple motion, 'racetrack motion' or Google Maps® matched trajectories via the SimROUTE™ tool
- RX Antenna Level Patterns editing
- Simulate leap second events
- · Flexibly allocate available hardware channels across licenced constellations
- · Display simulation parameters
- Display sky plot
- Selected remote control capability via Ethernet connection

Single Channel Utility (SCU)

PNT Xe supports the generation of a single channel satellite signal for each licenced constellation frequency. This allows individual control of several parameters including: A satellite's carrier frequency, power level, velocity profile and PRN, secondary code and navigation data.

Single Channel mode operation can be controlled via GUI or remote commands. Commands are formatted according to Spirent's SimREMOTE™ ICD and are sent via TCP/IP. Ideal for low-cost or targeted testing scenarios where single satellite control is required.



Figure 4 Single Channel Utility main GUI

Scenario Assistant

Scenario Assistant is a built-in software tool designed to simplify and accelerate the creation of GNSS test scenarios. With its intuitive, guided interface and template-based workflow, it enables users to configure meaningful simulation scenarios quickly with minimal setup complexity. Ideal for scalable environments and fast-paced testing workflows.

Scenario Assistant helps reduce setup time, improve consistency across teams, and lower the barrier to entry for new users. Scenarios can be saved, reused, and shared, supporting consistent, streamlined operations across production lines or global test teams.

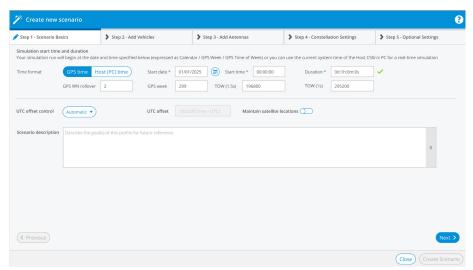


Figure 5 Scenario Assistant

GPS Authorised Testing

PNT Xe supports GPS authorised AES M-Code testing, this requires the SimMCODE option – US customers can purchase directly from Spirent subject to approval by US authorities; non-US customers can only purchase SimMCODE software via Foreign Military Sales (FMS) program.

This option is available for authorised users only.

Detailed Performance Specifications

GNSS Constellations and Supported Signals

Table 1 GNSS Signals Supported

System	Carrier	Signal	Magazara Tura		
			Message Type	Level ¹	Notes
GPS	L1	C/A	Legacy	-130.0 dBm	
		Р	Legacy	-133.0 dBm	
		L1c Pilot code	CNAV-2	-128.25 dBm	
		L1c Data code	CNAV-2	-133.0 dBm	
		M Noise	-	-128.5dBm	AES-M requires SimMCODE
	L2	L2c or C/A	CNAV	-136.0 dBm	
		Р	Legacy	-136.0 dBm	
		M Noise	-	-132.5dBm	AES-M requires SimMCODE
	L5	I, Q	CNAV	-127.9 dBm	
Galileo	E1	E1-B, E1-C (50/50 power sharing)	I/NAV	-128.0 dBm	OS Galileo Excludes SOL support
	E5ab	E5a(I+Q) and E5b(I+Q) (50/50 power sharing)	F/NAV, I/NAV	-122.0 dBm	OS Galileo – Supported FOC Galileo – Supported
	E6	E6-B, E6C (50/50 power sharing)	HAS	-128.0 dBm	
GLONASS	F1	C/A	Public	-131 dBm	
		P	-	-131 dBm	
	F2	C/A	Public	-137 dBm	
		P	-	-137 dBm	
	L1	CDMA	L10C	-128.5 dBm	
	L2	CDMA	L2OCp	-128.5 dBm	
	L3	CDMA	L3OC	-128.5 dBm	
BeiDou	B1	B1I	D1, D2	-133 dBm	D2 does not include differential corrections or lono grid
	B1	B1C	B-CNAV1	-130 dBm	
	B2	B2I	D1, D2	-133 dBm	
	B2	B2A	B-CNAV2	-127 dBm	
	B2	B2B	B-CNAV3, PPP-B2b_I	-130 dBm	
	B3	B3I	D1, D2	-133 dBm	
QZSS	L1	C/A, C/B	QZ-Legacy	-128.5 dBm	
		S	SLAS	-131 dBm	
		L1c Data + Pilot	QZ-CNAV-2	-127 dBm	
	L2	L2c	QZ-CNAV	-130 dBm	

¹ Nominal power levels as defined by Spirent. Via SimTEST, the user can adjust nominal power levels to meet individual ICD conditions.

	L5	I + Q	QZ-CNAV	-124.9 dBm
		S		-127 dBm
	L6	D+E	CLAS, CLAS-E (MADOCA)	-126.82 dBm ²
IRNSS	L1	SPS	L1	-130 dBm
	L5	SPS	L5	-130 dBm
SBAS ³	L1	C/A	Data	-130 dBm
	L5	L5-l	DFMC Data	-127.9 dBm

² Default power level setting is for Block II satellites. 3 SBAS includes WAAS, EGNOS, MSAS, GAGAN, SDCM, KASS, ANGA, SouthPAN and UKSBAS

System Performance

Table 2 Performance Levels for PNT Xe

Parameter	Description	Units	Notes
RF Signal Level	Carrier Level Control Maximum	+15 dB	
	Minimum	-40 dB	4
	Resolution	0.1 dB	
	Linearity +15 dB to -30 dB	<0.10 dB	
	-30.1 dB to -40 dB	<0.20 dB	
	Absolute Accuracy	±0.5 dB	5
	Run to Run Repeatability	±0.1 dB	
Iteration Rates	Supporte Simulation Iteration Rates (SIR)	10, 100Hz	
	Hardware update rate ⁶	100Hz	
	Bulk logging update rate	100Hz	
	Latency (remote data to RF)	4 x SIR	
Limit of Signal	Relative Velocity	±20000 m/s	8
Dynamics ⁷	Relative Acceleration	±1800 m/s2	
	Relative Jerk	±15000 m/s3	
	Angular Rates (at 1.5m lever arm)	>2π rad/s	
	(indicative) (at 0.05m lever arm)	>10π rad/s	
Signal Accuracy	Pseudorange Accuracy	5 mm RMS	9
	Pseudorange Bias	0 mm RMS	10
	1PPS to RF Alignment	< ±2ns	11
	Inter Frequency Alignment	< ±250ps (±75mm)	12
Spectral Purity	Harmonics	< -40dBc	
	In-band Spurious (highest limit applies)	< -182dBW	13
	Phase Noise (single sideband)	<0.02 Rad RMS	14
Signal Stability	Internal 10.00MHz OCX Oscillator (after warm up)	± 5 x 10-10 per day	
Static Multipath	Fixed path-length delay per path	0 to 1245m	
Channels	Resolution (approx.)	2.4m	
Scenario Duration	The maximum duration of a single scenario	24 days	

GPS: L1 \pm 20.5MHz , L2 \pm 20.5MHz , L5 \pm 20.5MHz Galileo: E1 \pm 20MHz , E5a \pm 25.5MHz , E5b \pm 25.5MHz

GLONASS: (relative to channel frequency 0) L1 \pm 20MHz , L2 \pm 20MHz

⁴ The control range extends to -50dB but performance is unspecified below -40dB. Operation below -20dB is primarily to support antenna pattern and multipath

functionality. 5 At 21oC ±5oC, +15 to -30dB. ±1.5dB 3-sigma all conditions.

⁶ The maximum rate at which any value can change is limited by SIR.

⁷ Note that the signal dynamic limits are dependent on the SIR and HUR.

⁸ For 6DOF data externally supplied via SimREMOTE or from data file.

⁹ Digitisation-induced error for signal acceleration < 45m/s2, jerk < 50m/s3, 100Hz SIR.

10 Per carrier operating on a single SDR radio card. When the same signal is generated across SDR radio cards the inter radio card bias uncertainty is ±250ps (

^{±75}mm) 11 Between any RF carrier.

¹² PRN code alignment between frequency band.

¹³ In-Band Spurious Bandwidths (relative to centre frequency unless otherwise stated):

BeiDou: B1/B2 ± 20.5MHz

¹⁴ Value is typical, integrated over a 1Hz to 10kHz bandwidth.

Parameter	Description	Units	Notes
Latency	For the operating in the HIL environment, the commands will take 4 times the SIR to be effective at RF	40ms @ 100Hz	15

Extensions and Options

SimHIL

SimHIL enables integration of PNT Xe with third-party vehicle models and driving simulators for Hardware-in-the-Loop (HIL) testing use cases.

SimHIL is compatible with the third-party tools listed in Table 3. Hardware, firmware, and software compatibility of these tools should always be confirmed with your Spirent representative prior to placing an order. PosApp version compatibility should also be verified prior to deployment.

If the variant or tool you are interested in is not listed, please contact Spirent for further information.

Table 3 SimHIL Options

Option	Real-time HW supported	SW versions supported	Supported SIR
<u> </u>			
SimHIL for dSPACE	dSPACE SCALEXIO 2.0	dSPACE Release 2019-A dSPACE Release 2021-A dSPACE Release 2022-A dSPACE Release 2023-A	Up to 10 ms (100 Hz)
SimHIL for IPG	NI PXIe 8840 13.1	IPG CarMaker 8.1.2 (Windows) IPG CarMaker 9.1.2 (Windows) IPG CarMaker HIL 9.1.2 (NI RT Linux OS) IPG CarMaker 10.1 (NI RT Linux OS)	Up to 10 ms (100 Hz)
SimHIL for SCANeR		SCANeR Studio 1.7 SCANeR Studio 1.8 SCANeR Studio 1.9r65 SCANeR Studio 2021, 2022 and 2023	Up to 10 ms (100 Hz)

PNT Automation

PNT Xe supports automation via PNT Automation, a comprehensive test authoring and execution tool built for testers, developers, and automation teams. It addresses the needs of manual testers, automation specialists, and managers alike to improve the productivity of the entire test workflow.

PNT Automation enables multiple tests to be run without any external intervention while providing analysis and test report capabilities.

It is specifically designed for PNT testing and includes control software (based on SimREMOTE) to accurately achieve the interoperability between Spirent simulators and the DUT(s). The DUTs are configured and controlled with PNT Automation using a dedicated User Interface.

For additional information please check MS3119.

STANDPOINT

PNT Xe is fully compatible with Spirent STANDPOINT, offering synchronization between the simulator and live-sky GNSS signals. It supports advanced testing scenarios such as spoofing, resilience assessments, and seamless transition between live and simulated environments. This integration allows users to conduct high-integrity tests with full control over signal conditions while leveraging real-world satellite data for enhanced realism.

For additional information please check MS3121

¹⁵ Simulation running at 10ms SIR.

External Interference Simulator GSS7765

PNT Xe can be combined with Spirent's external interference simulator, the GSS7765, to provide a comprehensive solution for testing satellite navigation equipment in the presence of intentional or unintentional RF interference.

The GSS7765 supports a very broad range of interfering signal types, including Continuous Wave (CW), AM and FM (pulsed signals also available). The interference simulator also supports noise generation with variable bandwidth.

Seamless integration with PNT Xe ensures full support for GNSS scenario execution, with coordinated control over interference signal content and dynamics.

For further technical details, refer to MS3055.

Connectivity

Table 4 Signal Generator Connectivity

Port	Туре	Parameter
Main RF Port	Output	N-type coax female, 50 Ohm, VSWR <1.2:1 AC coupled ±50 V DC, maximum reverse RF 30 dBm
High Level RF Port	Output	N-type coax female, 50 Ohm, VSWR <1.2:1 AC coupled ±50 V DC, maximum reverse RF 30 dBm
Auxiliary RF (Optional)	Input	N-type coax female, 50 Ohm, VSWR <1.4:1 0.5 to 2 GHz, Insertion Loss 14.5 dB typical
External Frequency Standard	Input	BNC coax socket, 50 Ohm -5 to +10 dBm at 1 MHz, 5 MHz, 10 MHz
Internal Frequency Standard	Output	BNC coax socket, 50 Ohm 10.00 MHz at +5 dBm nominal
1PPS IN	Input	BNC coax socket, 50 ohm, TTL level compatible
1PPS OUT	Output	BNC coax socket, 50 Ohm, TTL level compatible
Trigger IN	Input	BNC coax socket, 50 ohm, TTL level compatible
Timer 1	Output	BNC coax socket, 50 ohm, TTL level compatible. User configurable

Table 5 Internal Controller Connectivity

Interface	Туре	Parameter
USB (x6)	I/O	Mouse, keyboard and general file access (2 accessed from front + 4 on rear panel)
Ethernet (x1)	I/O	RJ-45 Ethernet interface standard. Used for general network access and available for remote control
Display Port	I/O	Video monitor port

Physical and Environmental Properties

Table 6 Physical and Environmental Properties

Part	Parameter	Value
Signal Generator	2U Chassis Dimensions (Height x Width x Depth)	H : 88.1mm W : 448.7mm (enclosure only)
		W : 482.6mm (including rack-mount ears) D : 495.5mm (enclosure only) D : 513mm (including front & rear ports)
	Typical Weight	<15kg (33lb) (configuration dependent)
	Operating Environment	0 to +50°C (32 to 122°F) (40-90% RH, non-condensing) Altitude restriction of 2000m
	Storage Environment	-40 to +60°C (-40 to 140°F) (20-90% RH, non-condensing)
	Electrical Power	100-240V 5A Max 50 to 60Hz

Accreditation and Compliance

Table 7 Safety and EMC Compliance

Compliance	Applicable Standard
Safety	Low Voltage Directive (LVD) 2014/35/EC IEC 62368-1:2014 (Second Edition) Audio/video, information and communication technology equipment. Safety requirements
EMC	EMC Directive 2014/30/EC EN 61326-1:2021 Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements
MET	MET Certification. Listing number E113897; MET Project Number 109752
	UL 62368-1/CAN C22.2 CSA 62368-1, Second Edition: Audio/video, information and communication technology equipment. Safety requirements

System Calibration

PNT Xe is calibrated in accordance with ISO/IEC 17025 standards at the time of purchase. This calibration remains valid for up to 180 days in storage prior to initial receipt by the customer, provided the unit is stored under standard environmental conditions. The recalibration interval is recommended to be 12 months, starting from when the unit is first put into service. To maintain ISO/IEC 17025 accreditation, all recalibrations must be performed by Spirent or an authorized ISO/IEC 17025-accredited laboratory.

Please note:

Installation of additional SDR radio card or performing calibration outside of an accredited Spirent facility will invalidate the accredited calibration. This includes customer-initiated use of the Auto Calibration Utility (where installed) and certain hardware upgrade procedures.

Related Brochures, Data Sheets and Specifications

Table 8 Related Product References

Related Product	Description	Data Sheet / Specification
SimREMOTE	Simulator Remote Control Additional Options	MS3015
SimROUTE	Road-Matched Trajectory generation Tool	MS3073
PNT Automation	Test Orchestration and Automation Platform	MS3119
Standpoint	Live-sky Synchronisation Solution	MS3121
SimMCODE	AES M-Code Upgrade Option	MS9018
GSS7765	External Interference Generator	MS3055

Environmental Social & Governance (ESG)

Spirent's Positioning Technology business unit has been committed to ESG good practice and improvement since achieving ISO14001:2015 Environmental Managemental System certification in 2004.

ESG is a priority for Spirent across all aspects of our business, from sustainable buildings and sustainable product design to sustainable supply chain, manufacturing and shipping/export processes. As is best practice, we follow a continuous improvement process in respect of ESG.

Many of Spirent's test solutions rely on physical test equipment used in situ by our customers. We are working to reduce the lifecycle impacts of our products, and the environments in which they are used, in a number of ways:

- Designing for environment and end of life, including compliance with all legal requirements;
- Reducing the size, weight, noise and power use of our products;
- Visualization and the development of Test-as-a-Service via PNT Professional Services;
- Improving utilization and automation; and
- In-field servicing and upgrades.

We use formal sustainability metrics in the product development process.

For more specific information on how ESG applies to our PNT test solutions, please contact your Spirent representative. For more information on Spirent initiatives, visit https://corporate.spirent.com/sustainability.

About Spirent Positioning Technology

Spirent enables innovation and development in the GNSS (global navigation satellite system) and additional PNT (positioning, navigation and timing) technologies that are increasingly influencing our lives.

Our clients promise superior performance to their customers. By providing comprehensive and tailored test and assurance solutions, Spirent assures that our clients fulfill that promise.

Why Spirent?

Over five decades Spirent has brought unrivaled power, control and precision to positioning, navigation and timing technology. Spirent is trusted by the leading developers across all segments to consult and deliver on innovative solutions, using the highest quality dedicated hardware and the most flexible and intuitive software on the market.

Spirent delivers

- Ground-breaking features proven to perform
- Flexible and customizable SDR technology for future-proofed test capabilities
- World-leading innovation, redefining industry expectations
- First-to-market with new signals and ICDs
- Signals built from first principles giving the reliable and precise truth data you need
- Unrivaled investment in customer-focused R&D
- A global customer support network with established experts

About Spirent Communications

Spirent Communications (LSE: SPT) is a global leader with deep expertise and decades of experience in testing, assurance, analytics and security, serving developers, service providers, and enterprise networks. We help bring clarity to increasingly complex technological and business challenges. Spirent's customers have made a promise to their customers to deliver superior performance. Spirent assures that those promises are fulfilled. For more information visit: www.spirent.com

US Government/Defense

+1-801-785-1448 info@spirentfederal.com Americas 1-800-SPIRENT

+1-800-774-7368 sales@spirent.com Europe and the Middle East

+44 (0) 1293 767979 emeainfo@spirent.com Asia and the Pacific +86-10-8518-2539 salesasia@spirent.com

