LDCBS1X4

GPS Passive 1X4 Splitter Technical Product Data

Features

- Precise Amplitude Balance

 Less than 1 dB variation between ports.
- Flat Group Delay
 - $\circ~$ Less than 1ns variation between L1 and L2.
- Low Insertion Loss
 - -7.5dB loss is typical across all operating frequencies.
- Wide Accepted Frequency Range
 - Accepts signals from the entire L-Band, covering all major GNSS constellations.
- Efficiently Blocked Ports
 - $\circ~$ Uses 200 Ω resistors to prevent antenna alarm faults from connected devices.
- Matched Phase Balance
 - $\circ~$ Less than 1° of variation between ports.

Description

This Loaded **DC B**locked **S**plitter **1X4 (LDCBS1X4)** is a passive one input, four output RF splitter that splits signals from 1.1 GHz to 1.7 GHz. This equipment is designed to split signals within the L-band to provide multiple devices with the signal from a single antenna. In the standard configuration, the J1 port will pass DC voltage from a connected device and pass this power to the antenna or other devices upline from the splitter. The other ports (J2-J4 are DC blocked and loaded with 200Ω resistors to simulate antenna current draw which prevents antenna alarm faults. Custom gain configuration, DC configuration, and connector configuration are available upon request.

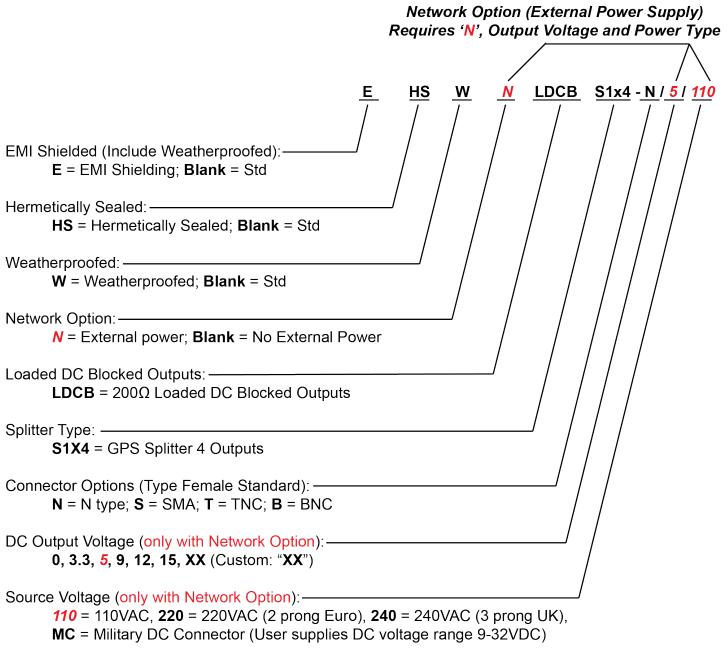
<u>Use Cases</u>

- Splitting a roof antenna signal between 4 GPS/GLONASS/GNSS receivers.
- Splitting a WAAS antenna between WASS receiver, ADS-B, and 2 other devices.
- Splitting a roof antenna signal to 4 passive antennas to re-radiate from 4 antennas.
- Usable as a smaller part in larger signal distribution networks.

LDCBS1X4 Electrical Specifications, TA=25°C

General Specification

Parameter	Notes	Min	Тур	Max	Units
Frequency Range	Covers all major GNSS constellations.	1.1		1.7	GHz
Characteristic Impedance	Unused ports should be terminated with 50 Ω loads.		50		Ω


GPS L1 & L2 RF Specification

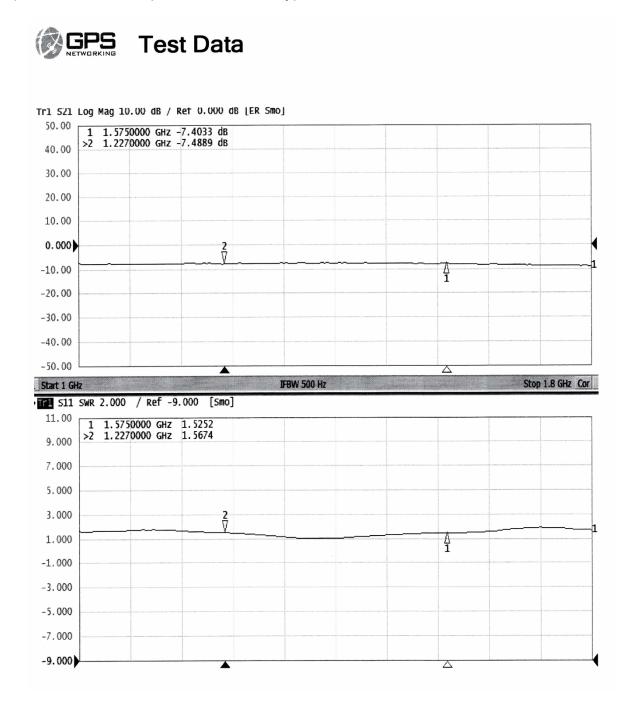
Parameter	Notes	Min	Тур	Max	Units
Input SWR	Input Standing Wave Ratio: S11			2.0:1	-
Output SWR	Output Standing Wave Ratio: S22			1.5:1	-
Insertion Loss	The loss that occurs from the input port to any output port: S21	-6.5	-7.5	-8.5	dB
Gain Flatness	The difference in loss or gain between the L1 and L2 frequencies.			1.00	dB
Amplitude Balance	The difference in gain or loss between each output port.			1.00	dB
Phase Balance	The difference in phase variation between each output port.			1.00	deg
Isolation	The amount of attenuation between two output ports.	L2:15 L1:22			dB
Group Delay Flatness	The difference in signal delay between the L1 and L2 frequencies.			1.00	ns

	External Power Options (Networl	xed Option)		
	Voltage Input	Style		
	110VAC	Transformer (ITA Type A Wall Mount)		
Source Voltage Options	220VAC (Euro)	Transformer (ITA Type C Wall Mount)		
	240VAC (United Kingdom)	Transformer (ITA Type G Wall Mount)		
	Customer Supplied DC 9-32 VDC	2-pin Military DC Connector		
	DC Voltage Out	Max Current out For Corresponding Vou		
	3.3V	110mA		
	5V	130mA		
Output Voltage Options ⁽¹⁾	9V	140mA		
	12V	180mA		
	15V	220mA		
	Custom	Custom		
	Standard DC Configuration without Exte	rnal Power Option		
	J1/Output 1 Pass DC, J2-J4/Output 2-4 Block	DC, Input Port Pass DC		
	200Ω loads standard for all DC Block	cked outputs		
Standa	rd DC Configuration with any External Power	Option (AC/DC or Military DC)		
	All DC Blocked Outputs feature 200Ω load in	standard configuration		
	User selected output DC vo	tage		
	RF Connector Options			
	Connector Style	Charge		
	Type N-female	No Charge		
Connector Ontions	Type SMA-female	No Charge		
Connector Options	Type TNC-female	No Charge		
	Type BNC-female	No Charge		
	Other	Contact GPS Networking		

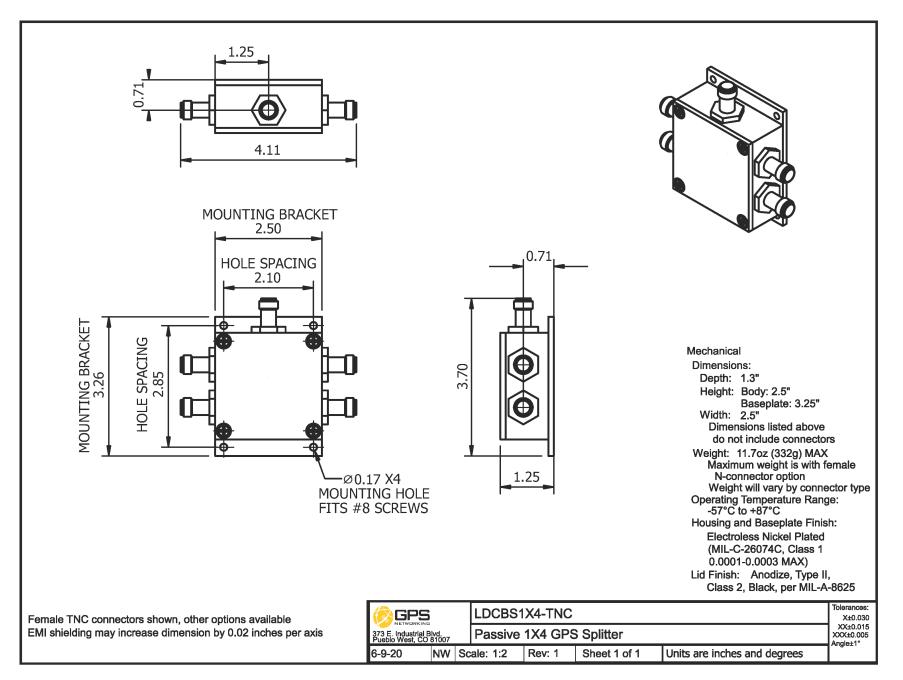
(1)With Network Option, any RF port (input or output) can be specified to Pass DC or Block DC

(Military DC Mating Connector is included standard with the MC power option).

When no external power supply option (AC or DC) is selected, Output 1/J1 is Pass DC Standard. When external power supply option is selected, all outputs are DC blocked standard.


Contact GPS Networking Technical Support at 1-800-463-3063 or salestech@gpsnetworking.com for any questions regarding non-standard configurations and corresponding part numbers.

LDCBS1X4 Performance



Typical Frequency Response: Ant. To J1, J2, J3, J4 (Type N connectors)

Each LDCBS1X4 ships with a test sheet that verifies critical performance characteristics, such as gain, input VSWR, and amplitude balance; a typical VNA test sheet is shown below.

Mechanical

Contact us at salestech@gpsnetworking.com for 3D models or CAD drawings.