CPDC2X1

2X1 GPS Combiner Technical Product Data

Features

- Precise Amplitude Balance
 - Less than 1 dB variation between ports.
- Flat Group Delay
 - Less than 1ns variation between L1 and L2.
- Low Insertion Loss
 - -4.0 dB loss is typical across all operating frequencies.
- Wide Accepted Frequency Range
 - Accepts signals from the entire L-Band, covering all major GNSS constellations.
- Matched Phase Balance
 - Less than 2° of variation between ports.

Description

The **CPDC2X1** GPS Combiner (GNSS Combiner) is a two input, one output device. The frequency response covers the entire L-band (all GNSS Frequencies) with excellent flatness. In the standard configuration, DC is passed from a connected GPS device through the combiner to both inputs (antenna ports). The connected GPS device or receiver will continue to maintain a GPS lock in the event of an antenna failure. Contact GPS Networking Technical Support for any questions regarding standard configurations or special configurations at salestech@gpsnetworking.com or 1-800-463-3063.

Use Cases

- Combining a signal from two GPS antennas to provide redundancy in case of antenna failure.
- Combining a signal from two GPS antennas to protect against environmental interruptions.
- GNSS-optimized signal combination for laboratory test and measurement.
 - 37% less loss than a standard resistive combiner.

CPDC2X1

Electrical Specifications, TA=25°C

General Specification

Parameter	Notes	Min	Тур	Max	Units
Frequency Range	Covers all major GNSS constellations.	1.1		1.7	GHz
Characteristic Impedance	Unused ports should be terminated with 50Ω loads.		50		Ω

GPS L1 & L2 RF Specification (1)

Parameter	Notes	Min	Тур	Max	Units
Input SWR	Input Standing Wave Ratio: S11			2.0:1	-
Output SWR	Output Standing Wave Ratio: S22		1.6:1	2.0:1	-
Insertion Loss	The loss that occurs from the input port to any output port: S21	-3.0	-4.0	-5.0	dB
Gain Flatness	The difference in loss or gain between the L1 and L2 frequencies.			1.0	dB
Amplitude Balance	The difference in gain or loss between each output port.		0.1	1.0	dB
Phase Balance	The difference in phase variation between each output port.		1.5	2.0	deg
Isolation	The amount of attenuation between two output ports.		L1:24.7 L2:18.7		dB
Group Delay Flatness	The difference in signal delay between the L1 and L2 frequencies.			1.0	ns

(1): Performance is slightly reduced around GPS L5. If working on sensitive L5 applications, please request performance data.

External Power Options (Networked Option)				
	Voltage Input	Style		
Source Voltage Options	110VAC	Transformer (ITA Type A Wall Mount)		
	220VAC (Euro)	Transformer (ITA Type C Wall Mount)		
	240VAC (United Kingdom)	Transformer (ITA Type G Wall Mount)		
	Customer Supplied DC 9-32 VDC	MIL-DTL-5015 10SL DC Connector (Includes Mate)		
Output Voltage Options ⁽²⁾	DC Voltage Out	Max Current out For Corresponding Vout		
	3.3V	110mA		
	5V	130mA		
	9V	140mA		
	12V	180mA		
	15V	220mA		
	Custom	Custom		
Standard DC Configuration without External Bower Ontion				

Standard DC Configuration without External Power Option

All ports pass DC

 200Ω loads standard for all DC Blocked outputs

Standard DC Configuration with any External Power Option (AC/DC or Military DC)

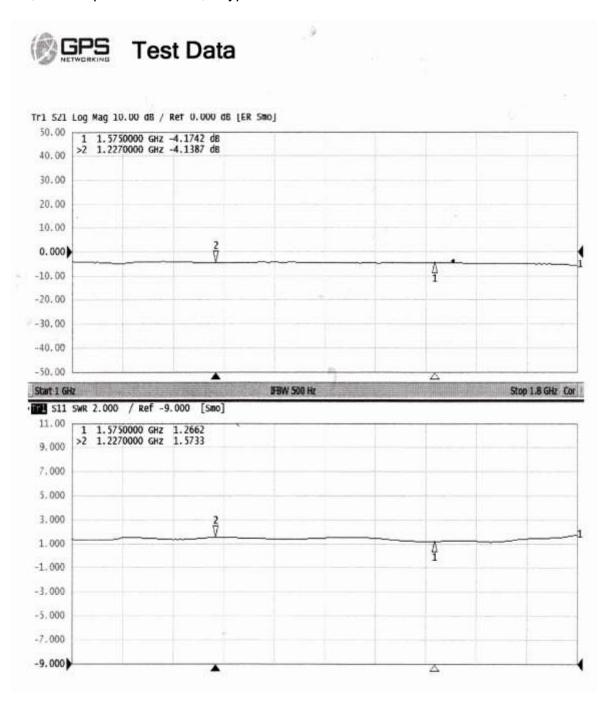
All DC Blocked Outputs feature 200 $\!\Omega$ load in standard configuration

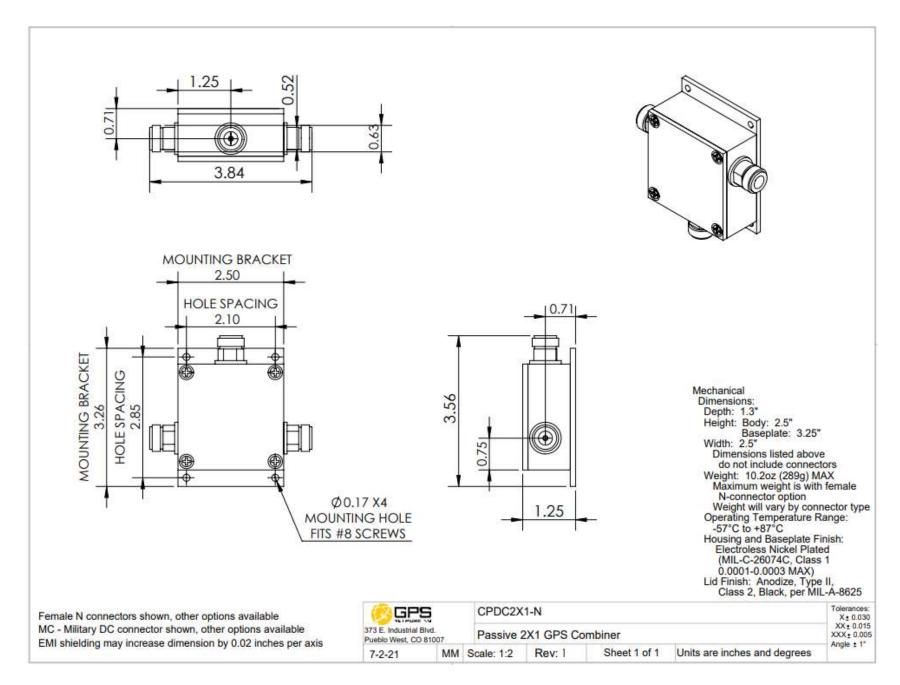
User selected output DC voltage

RF Connector Options				
	Connector Style	Charge		
	Type N-female	No Charge		
Connector Outland	Type SMA-female	No Charge		
Connector Options	Type TNC-female	No Charge		
	Type BNC-female	No Charge		
	Other	Contact GPS Networking		

(2): With Network Option, any RF port (input or output) can be specified to Pass DC or Block DC

Network Option (External Power Supply) Requires 'N', Output Voltage and Power Type HS E W N CPDC 2X1-N/5/110 Hermetically Sealed: HS = Hermetically Sealed; Blank = Std EMI Shielded (Include Weatherproofed): E = EMI Shielding; Blank = Std Weatherproofed: W = Weatherproofed; Blank = Std Network Option: N = External Power; Blank = No External Power Combiner Pass DC: CPDC = Combiner Pass DC to both inputs Combiner Type: 2X1 = 2 Inputs, 1 Output Connector Options (Type Female Standard): N = N type; S = SMA; T = TNC; B = BNCDC Output Voltage (only with Network Option): 3.3, 5, 9, 12, 15, XX (Custom: "XX") Source Voltage (only with Network Option): — 110=110VAC, 220=220VAC (2 prong Euro), 240=240VAC (3 prong UK), MC – Military DC Connector (User supplies DC voltage range 9-32VDC) (Military DC Mating Connector is included standard with the MC power option)


CPDC2X1



Performance

CPDC2x1 Standard Gain Typical

Each CPDC2X1 ships with a test sheet that verifies critical performance characteristics, such as gain, input VSWR, and amplitude balance; a typical VNA test sheet is shown below.

