ALDCBS1X2

GPS Amplified 1X2 Splitter Technical Product Data

Features

- Excellent Gain Flatness
 - o Less than 1 dB variation between ports.
- Flat Group Delay
 - Less than 1ns variation between L1 and L2.
- High Output Gain
 - 22 dB gain is typical across all operating frequencies.
- Wide Accepted Frequency Range
 - Accepts signals from the entire L-Band, covering all major GNSS constellations.
- Efficiently Blocked Ports
 - \circ Uses 200Ω resistors to prevent antenna alarm faults from connected devices.
- Matched Phase Balance
 - Less than 1° of variation between ports.

Description

This Amplified Loaded DC Blocked Splitter 1X2 (ALDCBS1X2) is an active one input, two output splitter that splits signals from 1.1 GHz to 1.7 GHz. This equipment is designed to amplify and split signals within the L-band to provide two devices with the signal from a single antenna. In the standard configuration, the J1 port will pass DC voltage from a connected device and pass this power to the antenna or other devices upline from the splitter via the antenna port. The other port (J2) is DC blocked and loaded with 200Ω resistors to simulate antenna current draw which prevents antenna alarm faults. Custom gain, DC power, and connector configurations are available upon request.

Use Cases

- Splitting and amplifying a roof antenna signal between 2 GPS/GLONASS/GNSS receivers.
- Splitting and amplifying WAAS antenna between WASS receiver and ADS-B.
- Splitting and amplifying an antenna signal to 2 passive antennas to re-radiate 2 spaces.
- Usable as a small part of a larger signal distribution network.

GPS NETWORKING

ALDCBS1X2

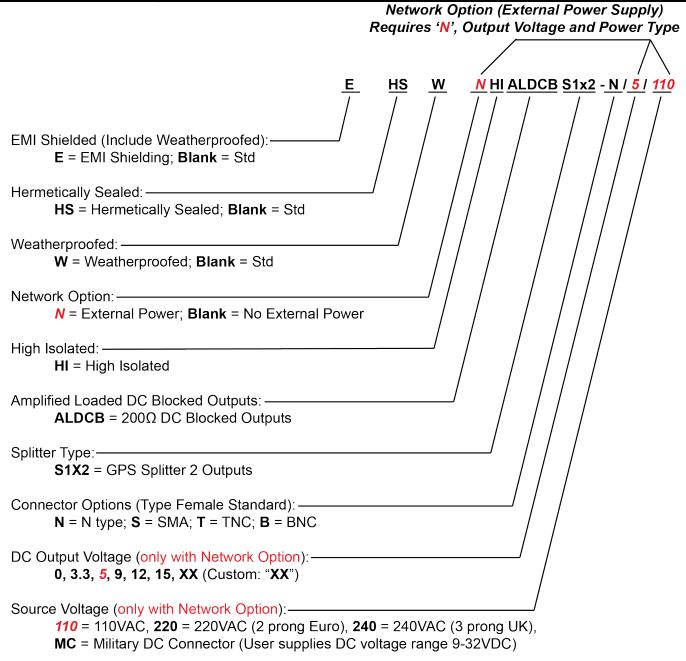
Electrical Specifications, TA=25°C

General Specification

<u>Parameter</u>	<u>Notes</u>	<u>Min</u>	Typ	<u>Max</u>	<u>Unit</u>
Frequency Range	Covers all major GNSS constellations.	1.1		1.7	GHz
Characteristic Impedance	Unused ports should be terminated with 50Ω loads.		50		Ω
Req. DC Input V.	Operating Voltage Range.	3.3		15	VDC
Input P1dB	The 1dB compression point.		-24		dBm
Current Draw ⁽¹⁾	Typical current consumption.			23	mA

GPS L1 & L2 RF Specification

<u>Parameter</u>	<u>Notes</u>	<u>Min</u>	<u>Typ</u>	Max	<u>Unit</u>
Gain	The relative increase in signal power provided by the amplifier.		22	23.5	dB
Input SWR	nput SWR Input Standing Wave Ratio: S11			2.0:1	-
Output SWR	SWR Output Standing Wave Ratio: S22			1.8:1	-
L1 Noise Figure	The increase in noise power relative to an ideal amplifier.		2.5	3.25	dB
Gain Flatness	The difference in loss or gain between the L1 and L2 frequencies.		0.5	1	dB
Amplitude Balance	The difference in gain or loss between each output port.			1.0	dB
Phase Balance	The difference in phase variation between each output port.			1.0	deg
Isolation	The amount of attenuation between two output ports.	L2:15 L1:22			dB
Group delay flatness	The difference in signal delay between the L1 and L2 frequencies.			1	ns
Input P1dB	The 1dB compression point.		-24		dBm
Current Draw	Typical current consumption.			23	mA


	External Power Options (Networked Option)					
	Voltage Input	Style				
	110VAC	Transformer (ITA Type A Wall Mount)				
Source Voltage Options	220VAC	Transformer (ITA Type C Wall Mount)				
	240VAC (United Kingdom)	Transformer (ITA Type G Wall Mount)				
	Customer Supplied DC 9-32 VDC	Mil DC Connector (Includes Mate)				
	DC Voltage Out	Max Current out For Corresponding Vout				
	3.3 V	110mA				
	5V	130mA				
Output Voltage Options (1)	9V	140mA				
Sulput Voltage Options	12V	180mA				
	15V	220mA				
	Custom	Custom				
	ndard DC Configuration without External Power (
	Output 1 Pass DC, J2/Output 2 Block DC, Input Pa					
Standard DC Configuration with any External Power Option (AC/DC or Military DC)						
	All Outputs DC Blocked with 200Ω load standar					
Any port can be custom selected to Pass or Block DC						
	Connector Style	Charge				
	Type N-female	No Charge				
Connector Options	Type SMA-female	No Charge				
Connector Options	Type TNC-female	No Charge				
	Type BNC-female	No Charge				
	Other	Contact GPS Networking				

(1)With Network Option, any RF port (input or output) can be specified to Pass DC or Block DC

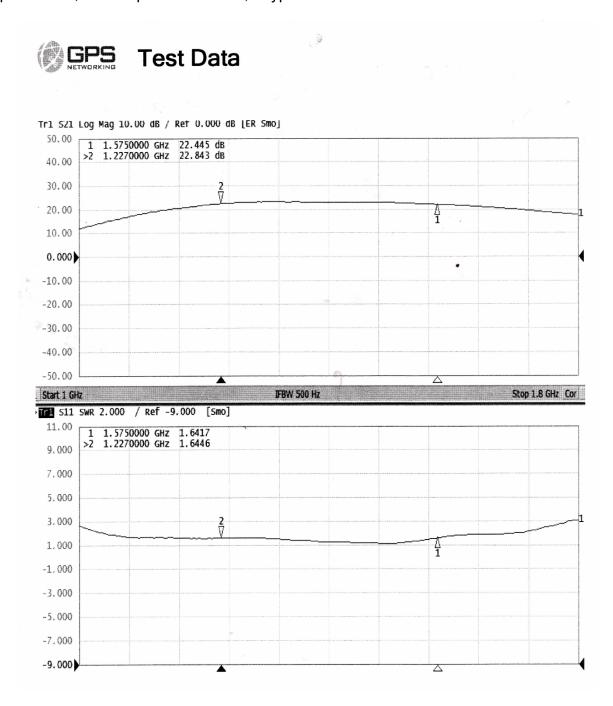
ALDCBS1X2

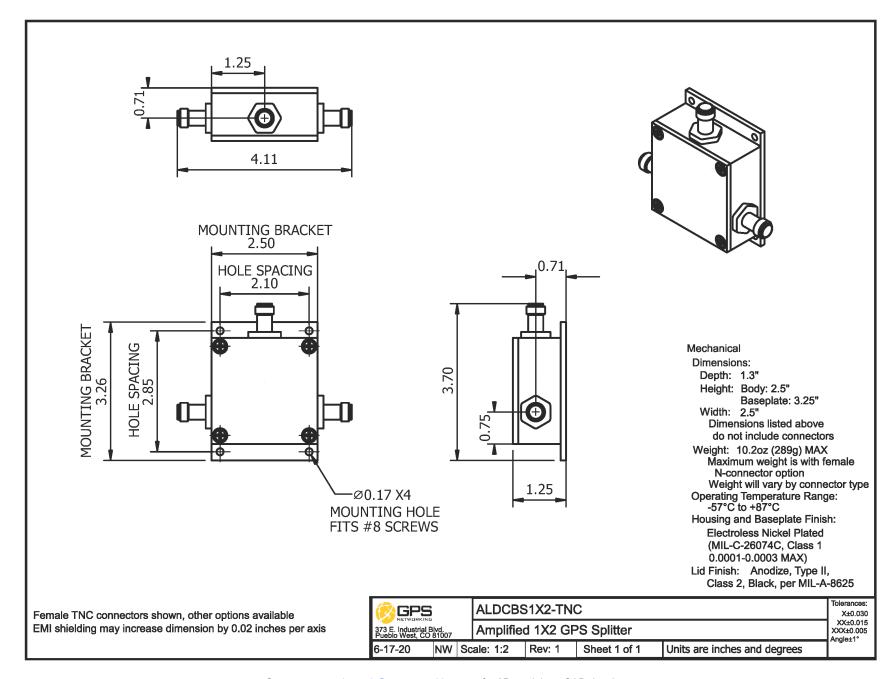
Part Number Configuration

(Military DC Mating Connector is included standard with the MC power option).

When no external power supply option (AC or DC) is selected, Output 1/J1 is Pass DC Standard. When external power supply option is selected, all outputs are DC blocked standard.

Contact GPS Networking Technical Support at 1-800-463-3063 or salestech@gpsnetworking.com for any questions regarding non-standard configurations and corresponding part numbers.


ALDCBS1X2



Performance

ALDCBS1X2 (Standard Gain, typical)

Each ALDCBS1X2 ships with a test sheet that verifies critical performance characteristics, such as gain, input VSWR, and amplitude balance; a typical VNA test sheet is shown below.

