Import and Generate CM+ Model with Focus LPCWave File

Neo

	4. Click Import LPC File
m Mesuro Model Generation Suite (v3.9.10.15)	5. Click <i>Choose File</i> and load Focus
mesuro	LPCWave file (In this example, we
File Model Generation Data Export Help	have only one bias condition)
From Database From File	6. There will be a dialog once the
Upload Measurement File	file is imported successfully and
Im Import *.lp files	
File Path to Mesuro MDF data format file	F format point Close
	Import *.lp files
	Import LP File format
	C:\Users\Neo\Desktop\CMplus_CGH40010_168POINTS.lpcwar Choose File
Other file formats	Save Cor Success
Import LPC File	File Import was successful
	ОК

4

7. In this part, we can check the LPCWave data by clicking *Data Summary*.*Check if the data is reasonable:

if Drain/Gate Voltage varies unusually, if efficiency exceeds 100%, etc.

To filter undesired data, click *Advanced Filter Option*.

Preview Advanced Filter Options	Dynamic Range Bias Data Summary			
Model this Data 🛛 Automatically Sort and Order by Input Variables	Input Power Output Power	☑ Drain Efficiency ☑ PAE		
Measured Gama	Output Power [Drain Efficiency	Dynamic Range Bias	Data	Summ
Measured Gamma - LoadF0		Variable	Min	Max
		Fundamental Frequency	2	-
		Input Power (dBm)	10.83	29.5
		Drain Voltage (V)	28.019	28.0
		Gate Voltage (V)	-2.518	-2.51
		Output Power (dBm)	20.37	38.94
	ĵ 30 -	Drain Efficiency (%)	1.064	60.92
	U IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAE (%)	1.124	60.3
	20 10		20 10	

8. In this part, we can remove undesired data by setting these filters and clicking **Apply Filtering**. In this example, we recommend to overwrite the bias settings as shown, so that the drain and gate voltage are fixed. When this model is used in the simulator, same bias condition (Vg: -2.5V, Vd: 28V in this case) should be set. Otherwise, the simulator will do extrapolation based on the bias condition.

File Model Generation Data Expo Preview Advanced Filter Options	Fundamental Fr Input Power (dB Drain Voltage (V	equency m))	2 10.83 28.019	- 29.521 28.032 2.516	Apply Filtering	Fundame Input Pow Drain Volt	ntal Frequency ver (dBm) age (V)	2 10.83 28	- 29.52 28
- Filter by Gamma (Mag / Angl	Output Power (d Drain Efficiency PAE (%)	Bm) (%)	20.37 1.064 1.124	38.943 60.92 60.358	Filter by Input Power / Bias	Output Po Drain Effic PAE (%)	wer (dBm) ciency (%)	20.37 1.065 1.125	38.94 60.97 60.41
Click to enable	Min Mag Min Ph	iase <u>M</u> i	lax Mag	Max Phase	<u>Click to enable</u>	Min	Max		
 Source Gamma F0 Source Gamma 2F0 Source Gamma 3F0 Load Gamma F0 Load Gamma 2F0 	0.000 -180. 0.000 -180. 0.000 -180. 0.000 -180. 0.000 -180. 0.000 -180. 0.000 -180.	200 I 000 I 1 I	1.000 × 1.000 × 1.000 × 1.000 × 1.000 ×	180.000 * 180.000 * 180.000 * 180.000 * 180.000 * 180.000 * 180.000 *	 Input Power (dBm) Input Voltage (V) Output Voltage (V) Input Current (mA) Output Current (mA) 	-100.000 (*) -10.000 (*) 0.000 (*) -20000.00 (*) -20000.00 (*)	40.000 ★ 40.000 ★ 50.000 ★ 50000.00(★ 50000.00(★		
Overwrite Bias Settings	0.000 ▼ -180. ▼ V	JUU 💌 1	.000 ▼	180.000 🔻	Click to enable Output Power (dBm) Drain Efficiency (%)	<u>Min</u> -100.000 ♥ 0.000 ♥	Max 100.000 문 100.000 문		

9. After applying the filter, click *Model this Data*.

Filter Actions Model this Data	Automatically Sort and Order by Input V	Dynamic Range Bias	Dat
Model this Data	Automatically Sort and Order by Input V		
	M Automatically Soft and Order by input v	/ariables Variable	Min
		Fundamental Frequenc	v 2
		Input Power (dBm)	10.83
Measured Gama		Drain Voltage (V)	28
	LoadF0	 Gate Voltage (V) 	-2.5
•		Output Power (dBm)	20.37
N	asured Gamma - LoadF0	Drain Efficiency (%)	1.065

10. In this step, choose the corresponding option based on the LPWave file and click *Generate Model Now*. In this example, the imported LPWave file contains load F0 and 2F0 nested pattern, so *Output Fundamental And Second (With Mixing)* is chosen. If the file contains only load F0, choose *Fundamental Only (6 Term)*.

Mesuro Model Generation Suite (v3.9.10.15)	-		1.1.1
mesuro			
File Model Generation Data Export Help			
Model Options Model Verification File Export XNP File Generator			
Generate Model	Coefficient Preview (Phase Terr	ms)	
	Load2F0 👻	VS	LoadF0 -
Generate Model Now			· · · · · · · · · · · · · · · · · · ·
			-
Fundamental Presets Harmonic Model Presets Custom Model			
Second Harmonic Only (6 Terms)			
Output Fundamental and Second (No Mixing)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•
⊂ Mixing Models			
 Output Fundamental And Second (With Mixing) 	-		
Output Fundamental, Second and Third harmonic	-		-
Output Fundamental, Input Second, Output Second			
			····

11. This part allows you to check the accuracy of the model. Always check the accuracy of only the frequency you wish to model e.g. the average value of B21 should be < 1%

1	1	
4		

Mesuro Model Generation Suite (VS.	9.10.13)							State of the local division of the local div	1
mesuro									
mesuro									
File Model Generation Data Exp	ort Help								
Model Options Model Verification	File Export XNF	P File Generat	or						
Select Verification Type	-Data Summan	/							
Measured Gamma	Variable	Min Error %	Max Error %	Avg Error	%				^
Input Waveforms	B21	0.0031	24.7876	0.695					
Dynamic Load Line	B22	0.0108	14.1552	2.1573					E
Transfer Characteristic	B23	0.0621	59.3715	4.4978					
Comparison of B Waves	B12	0.0069	12.0319	3.0824					
ineasureu A waves	B13	0.0833	31.3906	4.7087					
			<u>– B22 –</u>	⊟ B23 ·	- B	12 -	B13		
	60	Ŧ							
	00	± · · · · · · · · · · · · · · · · · · ·							
	50	+	· · · · · · · · · · · · · · · · · · ·					••••	
	a≈ 40	<u> </u>	· ·						
	ē								
	<u>5</u> 30	-	 С					···· 🖁	
	20	<u>∔</u>		· · · · · · · · · · · · · · · · · · ·					
	10		പ്പ്			₩₽	े स्रित	di la composición de la composicinde la composición de la composición de la composic	¶: €
Cycle Data Sets	10								
	0			<u>ta brian</u>					
Ť		0 20	40	60	80	100	120	140	160
				Measu	romont	noint			

12. Choose File Export tab, check Advanced Design System (ADS) 2011 or AWR Microwave Office, and click Create New File. Save the .mdf file. This .mdf file is the model file that will be used in ADS or AWR. Use V3

12	Mesuro Model Generation Suite (v3.9.10.15)
	File Model Generation Data Export Help
	Export As CardiffModelPlusFile V2 CardiffModelPlusFile V3 Insert Comment Issert Comment Add !************************************
	<pre>! ! Total Number of load points used in model generation: ! 2688 (16 sweep(s)) Remove Selected Select EDA</pre>
	AWR Microwave Office Create New File Append to File

<u>IN</u> 4	dvanced Design System 2011.10 (Main)		Advanced Design System 2011.10 (Main)
File	View Options Tools Window Des	signKits DesignGuide Help	File View Options Tools Window DesignKits WesignGuid
	New		📝 🐨 💹 💣 🍢 🔛 🔁 🗁 🚾 🔂
	Open	Workspace	File View Folder View Library View
•	Close Workspace Convert Project to Workspace Delete Workspace	Library Schematic Layout	 C:\Users\mesuro\Neo\CM+F0\CardiffModel_template_for_A Cardiff_Model Cell_1 CoefDisplay.dds
1 70	Save All Close All	EM EM Setup View	 → HB1Tone_LoadPull → HB1Tone_LoadPull_cardiff_model_test → HB1Tone_LoadPull_cardiff_model_test.dds
8	Manage Libraries Copy Library Rename Library	Image: Substrate Image: Substrate Image: Substrate Image: Substrate Image: Substrate	CardiffModel_te mplate_for_ADS_ v3_F0.7zap P HB1 lone_LoadPull_cardiff_model_test_power_sweep.dds P Load_Pull_Instrument1_r1 P Load_Tuner_Circular_or_Rect_wHarm_Zs_1
	Archive Workspace Unarchive Workspace or Project	pace	
	Import	•	
	Recent Workspaces	•	<
X	Exit Alt+F4	F4	C:\Users\mesuro\Neo\CM+F0\CardiffModel_template_for_ADS_v3_F0

- In ADS, click File Open Example, and load the template file: CardiffModel_template_for_ADS_v3_F0.7zap This file can be found in ...¥MESURO TEMPLATES¥ADS¥F0_ONLY
- 2. There are two simulations template:
 - HB1Tone_LoadPull_cardiff_model_test: Generate Pout and PAE contour in Smith chart
 - HB1Tone_LoadPull_cardiff_model_test_power_sweep:
 Power sweep at one load impedance point

In *HB1Tone_LoadPull_cardiff_model_test*, check the following parameters before simulation:

- File_Path of the CM+ model
- Load Pull region
- RFfreq
- Bias condition
- Pavs_dBm

Load_Pull_Instrument1_r1	Load Pull Instrument 1
V Bias1=-2.5 V	S imag num pts=15
V Bias2=28 V	S real min=-0.5
RF Freq=RFfreq · · · · · · · · · ·	S real max=0.2
Pavs_dBm=Pavs_dBm	S_real_num_pts≓15
ZO=ZO	Z_Source_Fund=Z_Source_Fund
Specify_Load_Center_S=0	Z_Source_2nd=50
Sweep_Rectangular_Region=0	
Swept_Harmonic_Num=1	
S_Load_Conter_Fund=0.8*exp(j*0.75*ni)	
S Load Center 2nd=0*exp(j=0.75 pt)	VAR6 · · · · · · · · · · · · · · · · · · ·
S Load Center 3rd=0*exp(i*0*pi)	RFfreq=2GHz
S Load Radius=0.9	· · · · · · · · · · · · · · · · · · ·
S_imag_min=-0.1	Cardiff Model
S_imag_max=0.5	
Note:	· · · · · · · · · · · · · · · · · · ·
If specifying a complex ZD, .	
for example 5+j*10, a load	
impedance of 5-j~10 correspondence of 5-j~10 correspondence of 0	HB1
You can obtain finer resolution	Frea[1]=RFfrea
near the edge of the Smith Cl	art Order[1]=9
	in a la <mark>l'ean</mark> . VAR a la l
· · · VAR7 · · · · · · · ·	
Z_Source_Fund=50	<u> </u>
Z0=50	
. Pavs_dBm=20	File_Path
	pathvar="C:\Users\mesuro\Neo\CM+F0\CGH40010_CMplus_model.mdf

In *HB1Tone_LoadPull_cardiff_model_test_power_sweep*, check the following parameters before simulation:

- File_Path of the CM+ model
- Source & Load impedance @ F0
- RFfreq
- Bias condition
- p_start, p_stop & p_step

VAR File_Path pathvar="C:\Users\mesuro\Neo\CM+F0\CGH40010_CMplus_model.mdf"	, . 	•
Load_Pull_Instrument1_r1		
V_Bias12.5 V S_Imag_num_pts=1 1-Tone		
V_Dias2-26 V S_real_max=0.55 Source Load		
Pavs dBm=Pavs dBm		·
$70=50+i^{\circ}0$		·
Specify Load Center S=1 Z Source 2nd=50	• •	
Sweep Rectangular Region=0		
Swept Harmonic Num=1		
-O-Load_Daseband=0*exp(j*0*pi)		
S_Load_Center_Fund=0.6*exp(j*16/18*pi)		
S_Load_Center_2nd=0*exp(j*2.5/18*pi)		
S_Load_Center_3rd=0*exp(j*-8.9/18*pi)		
S_Load_Radius=0.0	• •	•
rS_imag_min=0.1		•
. S_imag_max=0.8		•
· · · · Note: · · · · · · · · · · · · · · · · · · ·		
If specifying a complex Z0,		
for example 5+j*10, a load		
to a reflection coefficient of 0.	NCE	:
You can obtain finer resolution VAR8 Harmonic Balance		_
near the edge of the Smith Chart Pavs_dBm=10 HB1		·
Freq[1]=RFfreq		
· · · · · · · · · · · · · · · · · · ·		·
p_start=5		
p_stop=20		
p_step=0.5		

ma
Pavs_dBm=20.000
rho_load[::,1]=0.600 / 160.000
X1.X1.imag_indexs 11=0.205212, X1 X1.real_indexs 11=-0.563816
impedance = Z0 * (0.257 + j0.165)