

Waveguide Amplifiers Operational Manual

979 Second Street SE, Suite 309 Charlottesville, VA 22902-6172 (USA) Tel: 434.297.3257; Fax: 434.297.3258 www.vadiodes.com

Contents

Section 1 – Introduction Contents Safety and Operational Guidelines	
Section 2 – Product Overview and Specifications	Pages 4-6
Amplifier Overview	Page 4
Product Specifications – Broadband, Medium Power Amplifiers	Page 5
Product Specifications – Narrowband, High Power Amplifiers	Page 6
Appendix 1 – Amplifier Performance	Pages 7-18 Pages 7-18
Appendix 2 – Amplifier Drawings	Pages 19-22
Mechanical Drawing – WR15 to WR4.3	Page 19
Mechanical Drawing – 130AMPS, 170AMPS Only	Page 20
Mechanical Drawing – WR19	Page 21
Mechanical Drawing – Heatsink + Fan Assembly	Page 22

Addendum – Product Updates and Company Contacts	e 23
---	------

Safety and Operational Guidelines

Read all instructions and information in this product manual before connecting the product to external equipment. Operational procedures must be followed for proper function. If you have questions, contact VDI before operating the product.

VDI assumes the customer is familiar with microwave, millimeter wave and VDI products in general. The user and customer are expected to understand all safety guidelines, health hazards and general advisories that may exist and are associated with the use of this device. VDI is not responsible for any human hazards that may exist or may occur while using this device.

Disassembly of any VDI components is prohibited and will void the product's warranty. VDI is not responsible for the warranty or guarantee of products that are damaged as a result of improper handling, testing, biasing, or use by the user.

Virginia Diodes, Inc. (VDI) accepts no liability for damage or injury resulting from or caused by:

- Improper use, disassembly or use for other purposes than those for which the module was designed;
- Use outside common safety, health or general advisories pertaining to microwave, millimeter wave and VDI products;
- Repairs carried out by persons other than VDI or its assigned agents;

Waveguide Inspection / Test Port Care

- Inspect waveguide flanges prior to making connections.
- Waveguide screws should be torqued in the range 20-50 cNm, greater torque can damage the interface.
- Making a connection with metal debris between the waveguide flanges can damage the waveguide interface and prevent repeatable connections.
- If debris is present, clean the flange with pre-dampened TexWipe wipes or swabs (e.g. Part Number TX1065).
- If these are not available, TexWipe cloths lightly dampened with ethanol may be used (e.g. Part Number TX604).
- Replace dust caps when the system is idle.

General Operating Practices and Recommendations

- Check with VDI before any measurement connection is attempted beyond those described in this manual or if it may exceed commonly accepted standards of practice.
- VDI does not recommend the use of liquid or paste for either thermal grounding of VDI components or for locking screws. Liquids/pastes wicking into the VDI components can damage the internal devices and worsen performance.

Waveguide Amplifiers

Amplifiers are able to boost a small input RF signal to a large output RF signal. VDI offers amplifiers up to ~260 GHz with additional amplifiers under development. Higher frequency or narrowband higher power amplifiers may be available upon request.

Amplifiers with VDI SAX and CCU / CCD Modules

VDI amplifiers can be used with VDI Spectrum Analyzer Extension (SAX or SAX-M) Modules and

Compact Converter (CC) Modules, configured for block up-conversion mode. In block up-conversion mode, the module upconverts a block of IF signals in the microwave to millimeter-wave frequencies. VDI amplifiers are available to boost the output power and overcome significant conversion and transmission losses.

The figure below shows how an SAX module can be used with a band pass filter and an amplifier to enhance the performance of the module when configured for block up-conversion. Refer to the SAX Operational Manual for details on how to operate an SAX module.

Product Specifications – Broadband Power Amplifiers

General Specifications for VDI Waveguide Amplifiers			
Description	Specification		
DC Bias Voltage (V)	+9 ± 1		
Maximum Weight (Ibs.)	0.1		
Maximum Case Temperature*	< 45°C		
Fan Supply Voltage / Current Draw**	+5V / ~20mA		

*Waveguide amplifiers must be connected to thermally grounded waveguide prior to biasing.

**Heatsink + Fan Assembly only included on select amplifiers. Can be removed, but user must provide sufficient heatsinking to stay below the maximum case temperature.

VDI Broadband Power Amplifier Specifications						
VDI Part Number	WR19AMP	WR15AMP	WR12AMP	WR10AMP		
Amplifier Band (GHz)	40-60	50-75	60-90	75-110		
Waveguide Interface	WR-19	WR-15	WR-12	WR-10		
Gain, S21 (dB, typical)	16	20	18	18		
Saturated Output Power (dBm, typical)	20	19	20	20		
Output P1dB (dBm, typical)†	17	11	16	16		
Input Reflection, S11 (dB, typical)	-10	-10	-10	-10		
Output Reflection, S22 (dB, typical)	-10	-10	-10	-10		
Maximum RF Input Power (dBm)	+10	+10	+10	+10		
Bias Connector*	SMP(m)	SMP(m)	SMP(m)	SMP(m)		
Current Draw (Typical, Maximum, mA)	400 / 500 (est.)	450 / 1200	150 / 500	150 / 500		
VDI Part Number	WR8.0AMP	WR6.5AMP	WR4.3AMP	WR3.4AMP		
Amplifier Band (GHz)	90-140	110-170	170-260	220-330		
Waveguide Interface	WR-8.0	WR-6.5	WR-4.3	WR-3.4		
Gain, S21 (dB, typical)	23	20	24	24		
Saturated Output Power (dBm, typical)	19	18	16	5		
Output P1dB (dBm, typical)†	13	11	9	-1		
Input Reflection, S11 (dB, typical)	-10	-9	-9	-8		
Output Reflection, S22 (dB, typical)	-10	-10	-3	-6		
Maximum RF Input Power (dBm)	+10	+10	+6	0		
Bias Connector*	SMP(m)	SMP(m)	SMP(m)	SMP(m)		
Current Draw (Typical, Maximum, mA)	300 / 800	200 / 600	300 / 800	~200 / -		

†All amplifiers will meet P1dB specification listed above. P1dB data will not be provided with each amplifier.

*Amplifiers with SMP(m) bias connectors include SMP(f) to LEMO and SMP(f) to SMA(m) cables. The SMP to LEMO 00 cable is for use with an SAX-UP or CCU module. The SMP to SMA cable is for general use.

VDI Narrowband Powert Amplifier Specifications						
VDI Part Number	VDI15.0AMP- 0055/0067-15-20	VDI12.0AMP- 0067/0087-20-20	130AMPS	170AMPS	197AMPS	
Amplifier Band (GHz)	55-67	67-87	120-140	160-180	185-205	
Waveguide Interface	WR-15	WR-12	WR-6.5	WR-5.1	WR-4.3	
Gain, S21 (dB, typical)	17	20	24	17	15	
Saturated Output Power (dBm, typical)	20	19	22	21	18	
Output P1dB (dBm, typical)††	17	15	15	13	10 (est.)	
Input Reflection, S11 (dB, typical)	-7	-10	-10	-10	-10	
Output Reflection, S22 (dB, typical)	-10	-10	-10	-10	-10	
Bias Connector*	SMP(m)	SMP(m)	SMP(m)	SMP(m)	SMP(m)	
Maximum RF Input Power (dBm)	+10	+10	+10	+13	+13	
Current Draw (Typical, Maximum, mA)	150 / 500	150 / 500	~500 (typ., est.)	~700 (typ., est.)	~400 (typ., est.)	
Heatsink + Fan Assembly	No	No	Yes	Yes	Yes	
VDI Part Number	130AMPMP	170AMPMP	197AMPMP			
Amplifier Band (GHz)	120-140	160-180	185-205			
Waveguide Interface	WR-6.5	WR-5.1	WR-4.3			
Gain, S21 (dB, typical)	24	17	15			
Saturated Output Power (dBm, typical)	25	24	20			
Output P1dB (dBm, typical)††	-	-	13 (est.)			
Input Reflection, S11 (dB, typical)	-10	-10	-10			
Output Reflection, S22 (dB, typical)	-10	-10	-10			
Maximum RF Input Power (dBm)	+13	+16	+16			
Bias Connector*	Contact VDI	Contact VDI	Contact VDI			
Current Draw (Typical, Maximum, mA)	~1000 (typ., est.)	~1400 (typ., est.)	~800 (typ., est.)			
Dimensions (L x W x H, inches)	TBD	TBD	TBD			
Heatsink + Fan Assembly	Yes	Yes	Yes			

†Higher Power Narrowband Amplifiers are under development. Contact VDI for more information.

††All amplifiers will meet P1dB specification listed above. Sample P1dB performance as shown in Appendix 1. P1dB data will not be provided with each amplifier. *Amplifiers with SMP(m) bias connectors include SMP(f) to LEMO and SMP(f) to SMA(m) cables. The SMP to LEMO 00 cable is for use with an SAX-UP or CCU module. The SMP to SMA cable is for general use.

Typical amplifier performance plots are provided below.

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

Mechanical Drawing (WR15, WR12, WR10, WR8.0, WR6.5, WR4.3, 130AMPS and 197AMPS Amplifiers)

App-2 Pg-19

Mechanical Drawing (170AMPS Only)

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

Mechanical Drawing (WR19AMP Only)

Heatsink + Fan Assembly drawing is shown below. The Heatsink + Fan Assembly is included for select Narrowband Amplifiers.

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

App-2 Pg-22 The Virginia Diodes staff of engineering and physical science professionals works to continually improve our products. We also depend upon feedback from colleagues and customers. Ideas to simplify operations, improve performance or add capabilities are always welcome. Be certain that Virginia Diodes has your latest contact details including a phone number and an email address to receive update advisories.

Contact VDI:

Virginia Diodes, Inc. Web: <u>http://www.vadiodes.com</u> Email: <u>Technical@vadiodes.com</u> Telephone: 434.297.3257

© 2023 Virginia Diodes, Inc.—All Rights Reserved—Rev: 23 February 2023

Addendum Pg-23