

AMPLIFIER/DOUBLER/AMPLIFIER

ADA-2052

1. Device Overview

1.1 General Description

The ADA-2052 can be used as a frequency extender to enhance the frequency range of a <26 GHz synthesizer up to 52 GHz. Useful for lab testing, test and measurement, and prototype systems. It consists of an input buffer amplifier, doubler, and output buffer amplifier to provide a +16 dBm output (suitable for driving most mixers) from a -6 to +2 dBm input.

Module

Parameter	Typical	Unit		
Input Frequency Range	10 – 26	GHz		
Output Frequency Range	20 - 52	GHz		
Input Power	-6 to +2	dBm		
Output Power	+16	dBm		
1F Harmonic suppression	30	dBc		
3F Harmonic suppression	26	dBc		

1.2 Electrical Summary

1.3 Functional Block Diagram

1.4 Part Ordering Options¹

Part	Part Description		Product	Export	
Number			Lifecycle	Classification	
ADA-2052	Connectorized module	RoHS	Active	EAR99	

¹ Refer to our <u>website</u> for a list of definitions for terminology presented in this table.

Table of Contents

1.	Device Overview	
	1.1 General Description	I
	1.2 Electrical Summary	I
	1.3 Functional Block Diagram	I
	1.4 Part Ordering Options	I
2.	Port Configurations and Functions	3
	2.1 Port Diagram	3

	2.2 Port Functions	3
З.	Specifications 2	1
	3.1 Absolute Maximum Ratings	1
	3.2 Electrical Specifications	1
	3.3 Typical Performance Plots	5
4.	Mechanical Data 6	3
	4.1 Outline Drawing6	3

Revision History

······································				
Revision Code Revision Date		Comment		
-	February 2019	Datasheet Initial Release		

2. Port Configurations and Functions

2.1 Port Diagram

A top-down view of the ADA-2052 outline drawing is shown below.

2.2 Port Functions

Port	Function	Description	Equivalent Circuit	
Port 1	Input	This pin is DC open and matched to 50 Ω at frequency range 10 - 26 GHz	P1 ~	
Port 2	Output	This pin is DC open and matched to 50 Ω at frequency range 20 $-$ 52 GHz	P2 ~	
GND	Ground	Ground path is provided through the metal housing and outer ground lug.	GND	
Vd	Positive bias	Drain bias port must be connected to a 3.5 — 5.0 Volt power supply.	~~∾ Vd 	
Vg	Negative bias	Gate control for the amplifier must be connected to a -0.5 to -0.6 Volt power supply.	Vg ~~~~ Ļ	

3. Specifications

3.1 Absolute Maximum Ratings

The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may be inoperable or have a reduced lifetime.

Absolute Maximum Ratings			
Parameter	Maximum Rating		
Positive Bias Voltage	5 V		
Positive Bias Current	550 mA		
Negative Bias Voltage	-2 V		
Negative Bias Current	2 mA		
RF Input Power	+20 dBm		
Power Dissipation	2.5 W		
ESD (Human Body Model)	Class 1A		
Operating Temperature	-55°C to +85°C		
Storage Temperature	-65°C to +150°C		

3.2 Electrical Specifications

The electrical specifications apply at $T_A{=}{+}25^\circ\text{C}$ in a 50 Ω system.

Parameter	INPUT (GHz)	OUTPUT (GHz)	Min	Тур.	Мах
Input (dBm)					
F(in)	10.0 – 26.0		-6	0	
Output Converted Power (dBm)					
2F(out)		20.0 – 52.0	+14	+16	
Suppressions (dBc)					
F(in) Fundamental		10.0 - 26.0		30	
3F(out) Third Harmonic		30.0 - 60.0		26	
Bias Requirements (mA) ¹					
Vd: +4.0 Volts DC ²				400	
Vg: -0.6 Volts DC				0	

Suppression is relative to doubled output power. Isolation is defined as relative to the fundamental input power.

¹It is required that the negative bias be applied before or concurrent with the positive bias.

² The higher input power the better 2F output power and the worse 1F suppression will be, (see plot 2F Output Converted Power)

³ Suppression and current consumption will vary with bias voltage. Optimal performance is at approximately +4.0 V / -0.6 V.

3.3 Typical Performance Plots

4. Mechanical Data

4.1 Outline Drawing

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any product.