

## 20-50 GHz GaAs Surface Mount LO Driver Amplifier

### AMM-6702SM

Surface

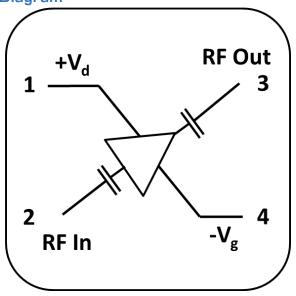
Mount

## **1. Device Overview**

### **1.1 General Description**

The AMM-6702SM is a surface-mount LO driver amplifier that is designed to provide sufficient LO drive for an H diode mixer such as the MM1-1850HSM or MM1-1850SSM across temperature with input power from 0-10 dBm. This ferritic package offers improved resilience to radiative feedback and oscillatory behavior over the bare-die package option, providing the customer with a compact, high gain, wideband LO driver amplifier.




- High gain
- Broadband performance
- +19 dBm output power
- Compact package

#### **1.3 Applications**

 Mobile test and measurement equipment

### 1.4 Functional Block Diagram

- Radar and satellite communications
- 5G transceivers
- Optimal LO driver amp for Marki S-diode mixers





## 1.5 Part Ordering Options<sup>1</sup>

| Part<br>Number      | Description                         | Package | Green Status | Product<br>Lifecycle | Export<br>Classification |
|---------------------|-------------------------------------|---------|--------------|----------------------|--------------------------|
| AMM-6702SM          | 4x4 mm Surface<br>Mount             | KFN     | RoHS         | Active               | EAR99                    |
| EVAL-AMM-<br>6702SM | Connectorized<br>Evaluation Fixture | EVAL    | RoHS         | Active               | EAR99                    |

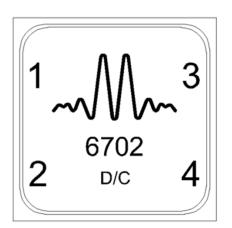
## Table of Contents

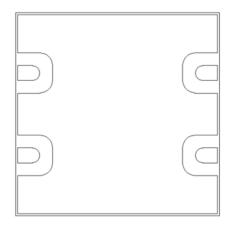
| 1. | Device Overview 1                  |   |
|----|------------------------------------|---|
|    | 1.1 General Description 1          |   |
|    | 1.2 Features 1                     |   |
|    | 1.3 Applications 1                 |   |
|    | 1.4 Functional Block Diagram 1     |   |
|    | 1.5 Part Ordering Options2         | ) |
| 2. | Port Configurations and Functions3 | } |
|    | 2.1 Port Diagram 3                 | } |
|    | 2.2 Port Functions                 | } |
| З. | Specifications 4                   | - |
|    | 3.1 Absolute Maximum Ratings       | Ļ |

| 3.2 Package Information4                 |
|------------------------------------------|
| 3.3 Recommended Operating Conditions . 4 |
| 3.4 Sequencing Requirements5             |
| 3.5 Electrical Specifications5           |
| 3.6 Typical Performance Plots6           |
| 4. Application Information8              |
| 4.1 Preventing oscillatory behavior8     |
| 4.2 Bypass Capacitance8                  |
| 4.3 Example Application Circuit          |
| 5. Mechanical Data9                      |
| 5.1 SMT Package Outline Drawing9         |
| 5.2 EVAL Package Outline Drawing 10      |

#### Revision History

| nevision miscory |               |                           |
|------------------|---------------|---------------------------|
| Revision Code    | Revision Date | Comment                   |
| -                | October 2019  | Datasheet Initial Release |


<sup>&</sup>lt;sup>1</sup> Refer to our <u>website</u> for a list of definitions for terminology presented in this table.




## 2. Port Configurations and Functions

#### 2.1 Port Diagram

A top-down (left) and bottom-up (right) view of the AMM-6702's KFN package outline drawing is shown below. The pin functions are detailed in section 2.2 of this datasheet.





#### **2.2 Port Functions**

| Port  | Function                             | Description                                                                                                                                                                    | Equivalent Circuit<br>for Package   |
|-------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Pin 1 | Positive DC<br>Supply V <sub>d</sub> | Pin 1 provides +2V to +4V DC voltage<br>and drain current to the amplifier.<br>Negative voltage must be supplied to Pin 4<br>before turning on the positive supply<br>voltage. | P1 ↓ V <sub>d</sub>                 |
| Pin 2 | RF Input                             | Pin 2 is the RF input of the amplifier. It is internally DC blocked.                                                                                                           | RF in<br><b>P2<sup>°−1⊢</sup></b> ≩ |
| Pin 3 | RF Output                            | Pin 3 is the RF output of the amplifier. It<br>is internally DC blocked.                                                                                                       | RF out                              |
| Pin 4 | Negative DC<br>Supply V <sub>g</sub> | Pin 2 provides -0.4V to -0.6V of DC<br>voltage. This must be turned on before<br>turning on the positive supply voltage to<br>Pin 1.                                           | Vg<br>₽4°√-↓                        |
| GND   | Ground                               | Bottom side must be connected to a<br>DC/RF ground potential with high thermal<br>and electrical conductivity.                                                                 | GND∽                                |



## **3.** Specifications

### 3.1 Absolute Maximum Ratings

The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may be inoperable or have a reduced lifetime.

| Parameter                     | Maximum Rating | Units |
|-------------------------------|----------------|-------|
| Positive Bias Voltage (Pin 1) | 5              | V     |
| Positive Bias Current (Pin 1) | 400            | mA    |
| Negative Bias Voltage (Pin 4) | -2             | V     |
| Negative Bias Current (Pin 4) | 100            | μA    |
| RF Input Power                | +24            | dBm   |
| Operating Temperature         | -40 to +125    | °C    |
| Storage Temperature           | -65 to +150    | ٥C    |

#### 3.2 Package Information

| Parameter | Details                                              | Rating |
|-----------|------------------------------------------------------|--------|
| ESD       | Human Body Model (HBM), per MIL-STD-750, Method 1020 | 0      |
| Weight    | EVAL Package                                         | 24.4g  |

#### 3.3 Recommended Operating Conditions

The Recommended Operating Conditions indicate the limits, inside which the device should be operated, to guarantee the performance given in Electrical Specifications (3.5). Operating outside these limits may not necessarily cause damage to the device, but the performance may degrade outside the limits of the Electrical Specifications. For limits, above which damage may occur, see Absolute Maximum Ratings (3.1).

|                                      | Min  | Nominal | Max  | Units |
|--------------------------------------|------|---------|------|-------|
| T <sub>A</sub> , Ambient Temperature | -55  | +25     | +125 | °C    |
| Positive DC Voltage                  | +2   | +3      | +4   | V     |
| Positive DC Current                  | 100  | 180     | 350  | mA    |
| Negative DC Voltage                  | -0.4 | -0.5    | -0.6 | V     |



### **3.4 Sequencing Requirements**

Turn-on Procedure:

- 1) Apply <-0.4V to Vg (Pin 4)
- 2) Apply Vd (Pin 1)

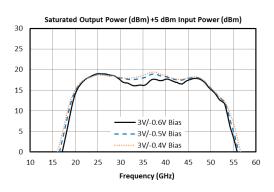
Turn-off Procedure:

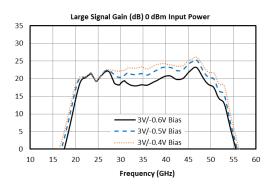
- 1) Turn off Vd (Pin 1)
- 2) Turn off Vg (Pin 4)

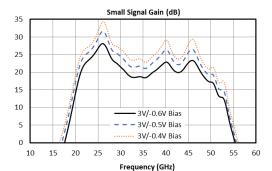
### 3.5 Electrical Specifications

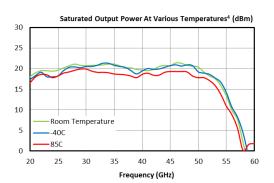
The electrical specifications apply at  $T_A=+25^{\circ}C$  in a 50 $\Omega$  system.

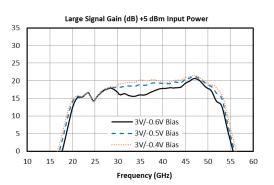
| Parameter                      | Test Conditions                       | Min <sup>2</sup> | Typical | Units |
|--------------------------------|---------------------------------------|------------------|---------|-------|
| Saturated Output Power         | 3V/-0.5V bias, +5 dBm Input<br>Power  | 17               | 18      | dBm   |
| Small Signal Gain              |                                       | 19               | 24      |       |
| Input Return Loss              |                                       |                  | 8       |       |
| Output Return Loss             | 3V/-0.5V bias, -25 dBm Input<br>Power |                  | 9       | dB    |
| Noise Figure                   |                                       |                  | 6.5     |       |
| Reverse Isolation              |                                       |                  | 45      |       |
|                                | 3V/-0.6V                              |                  | 130     |       |
| Bias Requirements <sup>3</sup> | 3V/-0.5V                              |                  | 180     | mA    |
| Input IP3 (IIP3)               | 3V/-0.5V bias, -25 dBm Input          |                  | З       |       |
| Output IP3 (OIP3)              | Power                                 |                  | 21      | dBm   |
| P <sub>1dB</sub>               | 3V/-0.5V bias                         |                  | 14.8    |       |

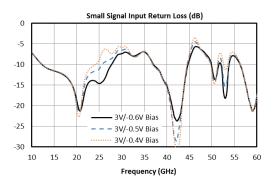

Min and Max limits apply only to our connectorized units and are guaranteed at  $T_A=+25$  °C.

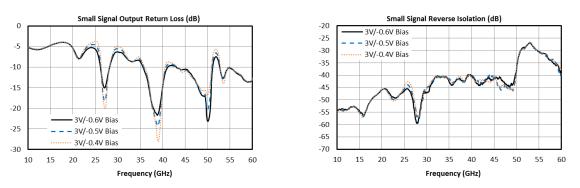

 $<sup>^{\</sup>rm 2}$  Minimum test specifications are verified up to 44 GHz within an EVAL fixture due to the high insertion loss of the fixture above 45 GHz.


<sup>&</sup>lt;sup>3</sup> Bias conditions tested with no RF input power. See section 3.6 for DC current vs. RF power



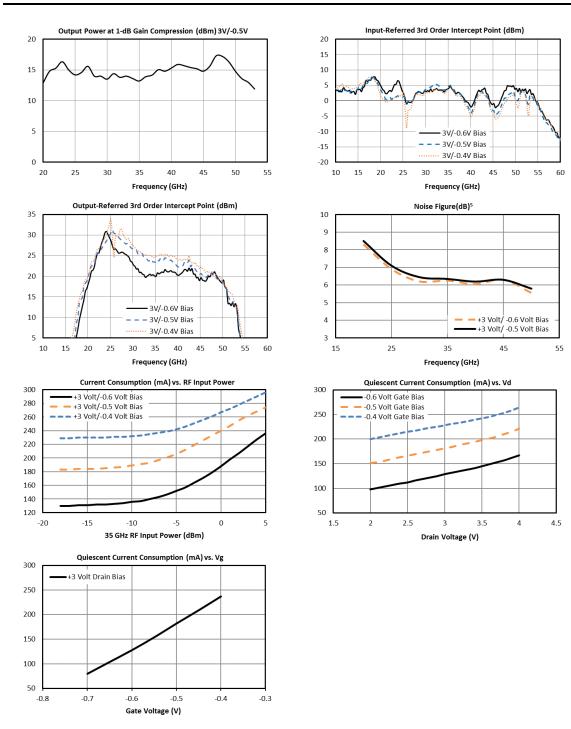


## 3.6 Typical Performance Plots












<sup>4</sup>Temperature-controlled output power measurements were performed in the EVAL-AMM-6702SM test fixture with 3V/-0.5V bias and +10 dBm RF input power





<sup>5</sup>Noise Figure measurement was performed on AMM-6702UC connectorized module.

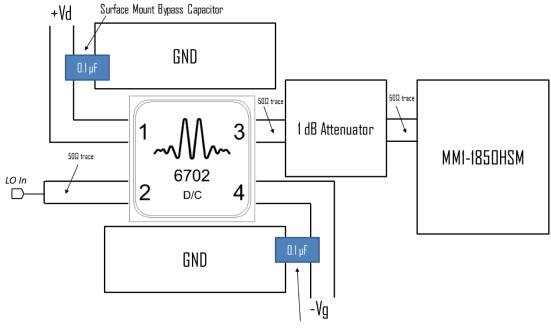


## 4. Application Information

#### 4.1 Preventing oscillatory behavior

The AMM-6702SM contains a multi-stage MMIC amplifier with very high small signal gain. This MMIC can be susceptible to oscillatory behavior if it is mounted in an environment which allows for output power from the AMM-6702SM to radiate back to the DC drain voltage supply line. We have created a special ferritic KFN package to greatly reduce the susceptibility to this behavior, but oscillations are still possible if the environment is conducive to radiative feedback or cavity resonances.

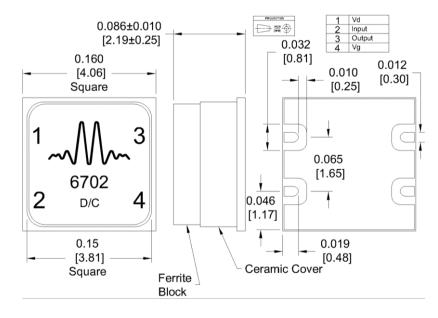
The AMM-6702SM is designed to be driven in saturation/gain compression as an LO driver amplifier, and will be more susceptible to oscillations when driven in small signal operation. In the case that the amplifier oscillates in your application circuit, packing additional ferrite and absorber around the KFN is an effective tool to combat it. We advise our customers to experiment with the AMM-6702SM in their planned application circuit and to contact <a href="mailto:support@markimicrowave.com">support@markimicrowave.com</a> if they have any questions or need advice for avoiding oscillations.


#### 4.2 Bypass Capacitance

It is recommended that customers use sufficient shunt capacitance to ground distributed along the gate and drain supply rails to prevent uncontrolled reactive loading from being presented to the DC supply ports of the AMM-6702SM. Customers observing oscillatory behavior in the amplifier may benefit from placing a small resistor in series with a large capacitor along the drain supply line close to the KFN.

#### 4.3 Example Application Circuit

Below is an example of an application circuit using the AMM-6702SM to drive the LO port of an MM1-1850HSM. It is recommended that the customer use a small amount attenuation between the amplifier and the mixer to prevent a standing wave pattern from forming, which can harm the performance of the mixer. There are bypass capacitors connected internally in the SM package, but we also recommend using additional surface mount capacitors on the drain and gate supply lines to ensure predictable performance.

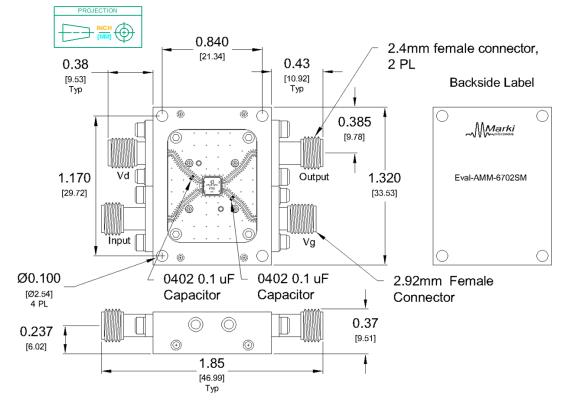





Surface Mount Bypass Capacitor

# 5. Mechanical Data

## 5.1 SMT Package Outline Drawing




#### Notes:

- 1) Substrate and lid material is ceramic
- 2) I/O Leads and Groud Paddle plating is TiWNiAu, 20  $\mu\text{-inches}$  max Au over 30 to 60  $\mu\text{-inches}$  Ni



## 5.2 EVAL Package Outline Drawing

